Zobrazeno 1 - 10
of 15
pro vyhledávání: '"GHIMENTI, MARCO GIPO"'
Publikováno v:
Progress In Variational Methods ISBN: 9789814327831
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45551c6abf63f9737e41b6170e9c87d5
https://doi.org/10.1142/9789814327848_0002
https://doi.org/10.1142/9789814327848_0002
Autor:
GHIMENTI, MARCO GIPO, Micheletti, AM
Let (M, g) be a smooth connected compact Riemannian manifold of finite dimension n ≥ 2 with a smooth boundary OM. We consider the problem {-ε2Δgu + u=|u|p-2u, u>0 on M, ∂u/∂v= 0 on ∂M, where v is an exterior normal to ∂M. The number of so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1299::51593b732a7c48d71d3a1e2a89ebaddf
http://hdl.handle.net/10281/9191
http://hdl.handle.net/10281/9191
Autor:
GHIMENTI, MARCO GIPO, Micheletti, AM
We consider the problem-epsilon(2) Delta(g)u + u = vertical bar u vertical bar(p-2)uin a symmetric Riemannian manifold (M, g). We give a multiplicity result for antisymmetric changing sign solutions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a9b43e696c6be68ecc16fbbe05aaddcf
http://hdl.handle.net/11568/197516
http://hdl.handle.net/11568/197516
Autor:
GHIMENTI, MARCO GIPO, Grisanti, CR
We are interested in the existence of standing waves for the nonlinear Klein Gordon equation ∈2□ ψ + W′(ψ) = 0 in a bounded domain D. A standing wave has the form ψ(t,x) = u(x)e-iwt/∈; for these solutions the Klein Gordon equation becomes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1299::ee9d16e662e52c17afa5b2c69677ed04
http://hdl.handle.net/10281/9875
http://hdl.handle.net/10281/9875