Zobrazeno 1 - 10
of 23
pro vyhledávání: '"GEZER, Niyazi Anıl"'
A positive operator $T:E\to E$ on a Banach lattice $E$ with an order continuous norm is said to be $\mathfrak{B}$-Volterra with respect to a Boolean algebra $\mathfrak{B}$ of order projections of $E$ if the bands canonically corresponding to elements
Externí odkaz:
http://arxiv.org/abs/2011.06894
Unbounded convergences have been applied successfully to locally solid topologies on vector lattices. In the present paper, we first expose several properties of various classes of Riesz pseudonorms on vector lattices. We accomplish this by abstracti
Externí odkaz:
http://arxiv.org/abs/1910.06363
Suppose $X$ is a locally solid vector lattice. It is known that there are several non-equivalent spaces of bounded operators on $X$. In this paper, we consider some situations under which these classes of bounded operators form locally solid vector l
Externí odkaz:
http://arxiv.org/abs/1710.11434
In this paper, using the concept of unbounded absolute weak convergence ($uaw$-convergence, for short) in a Banach lattice, we define two classes of continuous operators, named $uaw$-Dunford-Pettis and $uaw$-compact operators. We investigate some pro
Externí odkaz:
http://arxiv.org/abs/1708.03970
Publikováno v:
In Indagationes Mathematicae July 2021 32(4):861-882
Autor:
Gezer, Niyazi Anıl1 (AUTHOR) anilgezer@gmail.com
Publikováno v:
Positivity. Apr2023, Vol. 27 Issue 2, p1-13. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
ÖZCAN, Nazife ERKURŞUN1, GEZER, Niyazi Anıl2, ÖZDEMİR, Şaziye Ece3, URGANCI, İrem Mesude4 irem.mesude@hotmail.com
Publikováno v:
Turkish Journal of Mathematics. 2021, Vol. 45 Issue 2, p634-646. 13p.
Autor:
Erkurşun-Özcan, Nazife1 erkursun.ozcan@hacettepe.edu.tr, Gezer, Niyazi Anıl2 ngezer@metu.edu.tr, Zabeti, Omid3 o.zabeti@gmail.com
Publikováno v:
Matematicki Vesnik. Dec2019, Vol. 71 Issue 4, p351-358. 8p.
Publikováno v:
Turkish Journal of Mathematics. 2019, Vol. 43 Issue 6, p2731-2740. 10p.