Zobrazeno 1 - 10
of 221
pro vyhledávání: '"GASSNER, GREGOR J."'
Free-stream preservation is an essential property for numerical solvers on curvilinear grids. Key to this property is that the metric terms of the curvilinear mapping satisfy discrete metric identities, i.e., have zero divergence. Divergence-free met
Externí odkaz:
http://arxiv.org/abs/2410.14502
Autor:
Doehring, Daniel, Christmann, Lars, Schlottke-Lakemper, Michael, Gassner, Gregor J., Torrilhon, Manuel
In this paper, we extend the Paired-Explicit Runge-Kutta schemes by Vermeire et. al. to fourth-order of consistency. Based on the order conditions for partitioned Runge-Kutta methods we motivate a specific form of the Butcher arrays which leads to a
Externí odkaz:
http://arxiv.org/abs/2408.05470
In this paper, we apply the Paired-Explicit Runge-Kutta (P-ERK) schemes by Vermeire et. al. (2019, 2022) to dynamically partitioned systems arising from adaptive mesh refinement. The P-ERK schemes enable multirate time-integration with no changes in
Externí odkaz:
http://arxiv.org/abs/2403.05144
In this paper, we present an entropy-stable (ES) discretization using a nodal discontinuous Galerkin (DG) method for the ideal multi-ion magneto-hydrodynamics (MHD) equations. We start by performing a continuous entropy analysis of the ideal multi-io
Externí odkaz:
http://arxiv.org/abs/2402.14615
A novel optimization procedure for the generation of stability polynomials of stabilized explicit Runge-Kutta methods is devised. Intended for semidiscretizations of hyperbolic partial differential equations, the herein developed approach allows the
Externí odkaz:
http://arxiv.org/abs/2402.12140
Autor:
Ranocha, Hendrik, Winters, Andrew R., Schlottke-Lakemper, Michael, Öffner, Philipp, Glaubitz, Jan, Gassner, Gregor J.
Publikováno v:
Journal of Computational Physics, 2024
We use the framework of upwind summation-by-parts (SBP) operators developed by Mattsson (2017, doi:10.1016/j.jcp.2017.01.042) and study different flux vector splittings in this context. To do so, we introduce discontinuous-Galerkin-like interface ter
Externí odkaz:
http://arxiv.org/abs/2311.13888
We extend the monolithic convex limiting (MCL) methodology to nodal discontinuous Galerkin spectral element methods (DGSEM). The use of Legendre-Gauss-Lobatto (LGL) quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic prob
Externí odkaz:
http://arxiv.org/abs/2303.00374
In this paper, we show that diagonal-norm summation by parts (SBP) discretizations of general non-conservative systems of hyperbolic balance laws can be rewritten as a finite-volume-type formula, also known as flux-differencing formula, if the non-co
Externí odkaz:
http://arxiv.org/abs/2211.14009
Autor:
Ranocha, Hendrik, Winters, Andrew R., Castro, Hugo Guillermo, Dalcin, Lisandro, Schlottke-Lakemper, Michael, Gassner, Gregor J., Parsani, Matteo
Publikováno v:
Communications on Applied Mathematics and Computation, 2023
We study temporal step size control of explicit Runge-Kutta methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate tha
Externí odkaz:
http://arxiv.org/abs/2209.07037
Publikováno v:
In Journal of Computational Physics 15 February 2025 523