Zobrazeno 1 - 10
of 82
pro vyhledávání: '"GANGULY, ARIJIT"'
Autor:
Das, Sourav, Ganguly, Arijit
Publikováno v:
Bull. Aust. Math. Soc. 110 (2024) 216-233
We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani to the function field set-up, we extend many results from homogeneous Diophantine approximation to the realm of inhomogeneous Dio
Externí odkaz:
http://arxiv.org/abs/2312.00419
Autor:
Das, Sourav, Ganguly, Arijit
The goal of this paper is to establish a complete Khintchine-Groshev type theorem in both homogeneous and inhomogeneous setting, on analytic nondegenerate manifolds over a local field of positive characteristic. The dual form of Diophantine approxima
Externí odkaz:
http://arxiv.org/abs/2209.12218
Autor:
Das, Sourav, Ganguly, Arijit
We study the problem of improving Dirichlet's theorem of metric Diophantine approximation in the $S$-adic setting. Our approach is based on translation of the problem related to Dirichlet improvability into a dynamical one, and the main technique of
Externí odkaz:
http://arxiv.org/abs/2201.12162
Autor:
Ganguly, Arijit
In this paper we establish the convergence case of Khintchine's theorem for affine hyperplanes in function field of positive characteristic. Along with that, we also prove a quantitative version of the same. The main technique used in the proof is a
Externí odkaz:
http://arxiv.org/abs/2106.04806
We study random walks on a $d$-dimensional torus by affine expanding maps whose linear parts commute. Assuming an irrationality condition on their translation parts, we prove that the Haar measure is the unique stationary measure. We deduce that if $
Externí odkaz:
http://arxiv.org/abs/2002.00455
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ganguly, Arijit, Ghosh, Anish
We prove a strengthened version of the inhomogeneous Sprindzhuk conjecture in metric Diophantine approximation, over a local field of positive characteristic. The main tool is the transference principle of Beresnevich and Velani coupled with earlier
Externí odkaz:
http://arxiv.org/abs/1903.07368
Autor:
Ganguly, Arijit, Khokan Naskar
The book is divided into seven segments: Insect diversity and conservation, environmental toxicology of insects, insect taxonomy, insect behaviour, medicinal value of insects, Insects as food for human and livestock, and insect pest management. In th
Autor:
Ganguly, Arijit, Ghosh, Anish
We study some problems in metric Diophantine approximation over local fields of positive characteristic.
Comment: To appear in Mathematica Scandinavica
Comment: To appear in Mathematica Scandinavica
Externí odkaz:
http://arxiv.org/abs/1812.07147
Publikováno v:
In Journal of Number Theory December 2022 241:57-90