Zobrazeno 1 - 10
of 65
pro vyhledávání: '"G. Warot"'
Publikováno v:
Cell Transplantation, Vol 31 (2022)
Stem cells have the capacity to ensure the renewal of tissues and organs. They could be used in the future for a wide range of therapeutic purposes and are preserved at liquid nitrogen temperature to prevent any chemical or biological activity up to
Externí odkaz:
https://doaj.org/article/06868f2b998a4760b129d0b8cfa344ae
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
G. Warot, A. V. Rakhimov, Yu. Shitov, N. I. Rukhadze, I. Stekl, A. A. Klimenko, S. I. Konovalov, A. S. Barabash, E. Rukhadze, V. B. Brudanin, V.I. Umatov
Publikováno v:
Nuclear Physics A
Nuclear Physics A, 2020, 996, pp.121697. ⟨10.1016/j.nuclphysa.2020.121697⟩
Nucl.Phys.A
Nucl.Phys.A, 2020, 996, pp.121697. ⟨10.1016/j.nuclphysa.2020.121697⟩
Nuclear Physics A, 2020, 996, pp.121697. ⟨10.1016/j.nuclphysa.2020.121697⟩
Nucl.Phys.A
Nucl.Phys.A, 2020, 996, pp.121697. ⟨10.1016/j.nuclphysa.2020.121697⟩
New limits on $\beta^+$EC and ECEC processes in $^{74}$Se have been obtained using a 600 cm$^3$ HPGe detector and an external source consisting of 1600 g of a natural selenium powder. For different $\beta^+$EC and ECEC transitions (to the ground and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53b080c40987ad7272f425682b5bc9a9
http://arxiv.org/abs/2001.07069
http://arxiv.org/abs/2001.07069
Autor:
E. Rukhadze, V.I. Umatov, V. B. Brudanin, Yu. Shitov, S. I. Konovalov, I. Stekl, N. I. Rukhadze, A. S. Barabash, G. Warot, A. V. Rakhimov, A. A. Klimenko
Publikováno v:
Bull.Russ.Acad.Sci.Phys.
Bull.Russ.Acad.Sci.Phys., 2020, 84 (8), pp.974-978. ⟨10.3103/S1062873820080250⟩
Bulletin of the Russian Academy of Sciences-Physics
Bulletin of the Russian Academy of Sciences-Physics, 2020, 84 (8), pp.974-978. ⟨10.3103/S1062873820080250⟩
Bull.Russ.Acad.Sci.Phys., 2020, 84 (8), pp.974-978. ⟨10.3103/S1062873820080250⟩
Bulletin of the Russian Academy of Sciences-Physics
Bulletin of the Russian Academy of Sciences-Physics, 2020, 84 (8), pp.974-978. ⟨10.3103/S1062873820080250⟩
International audience; Double beta decay (β$^{+}$EC, EC/EC) of $^{74}$Se was investigated at the Modane underground laboratory (LSM, France; 4800 m of water equivalent) using the OBELIX ultralow-background HPGe detector with a sensitive volume of 6
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a07e1f908ba4f2633d8dcf1d37d2195a
https://hal.archives-ouvertes.fr/hal-02959527
https://hal.archives-ouvertes.fr/hal-02959527
Autor:
A. A. Klimenko, V. G. Egorov, E. Rukhadze, G. Warot, N. I. Rukhadze, P. Loaiza, Yu. Shitov, R. Hodák, I. Stekl, M. Zampaolo, F. Mamedov, F. Piquemal, E. A. Yakushev, V. B. Brudanin
Publikováno v:
IOSR Journal of Applied Physics. :22-29
Autor:
G. Warot, A. V. Rakhimov, V. B. Brudanin, I. Stekl, N. I. Rukhadze, V. I. Umatov, E. Rukhadze, S. I. Konovalov, Yu. A. Shitov, A. A. Klimenko, A. S. Barabash
Publikováno v:
AIP Conf.Proc.
Matrix Elements for the Double-beta-decay EXperiments
Matrix Elements for the Double-beta-decay EXperiments, May 2019, Prague, Czech Republic. pp.020021, ⟨10.1063/1.5130982⟩
Matrix Elements for the Double-beta-decay EXperiments
Matrix Elements for the Double-beta-decay EXperiments, May 2019, Prague, Czech Republic. pp.020021, ⟨10.1063/1.5130982⟩
International audience; Investigation of double beta decay processes (β+EC, EC/EC) of 74Se was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using ultra low-background HPGe detector Obelix with sensitive volume of 600 cm3
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b087ef72341648b8e58b5851e3460055
https://hal.science/hal-02404210
https://hal.science/hal-02404210
Autor:
J. J. Evans, F. Perrot, Masaharu Nomachi, Jihane Maalmi, Dominique Breton, D. Duchesneau, P. Guzowski, Y. Lemière, X.R. Liu, R. Breier, S. Jullian, Hector Gomez, S. I. Konovalov, V. Egorov, F.A. Tashimova, Y. A. Ramachers, G. Claverie, B. Richards, V. B. Brudanin, J.P. Cesar, S. Torre, F. Mamedov, R. Salazar, Karol Holý, D. Waters, X. Sarazin, V. V. Timkin, V.I. Umatov, O.I. Kochetov, A. A. Mirsagatova, C. Vilela, A. V. Rakhimov, C. Hugon, Juergen Thomas, G. Eurin, I. Stekl, J. S. Ricol, J. Mott, I. I. Sadikov, A. S. Barabash, Lukas Fajt, D.V. Filosofov, H. Ohsumi, E. Rukhadze, T. Le Noblet, Ch. Bourgeois, Fedor Šimkovic, Igor Nemchenok, A. Huber, N.I. Rukhadze, A. Minotti, N.A. Mirzayev, L. Simard, A. Smetana, Vit Vorobel, S. Snow, P Pridal, J. Busto, A. Chopra, Z. J. Liptak, C. Cerna, G. Warot, Karol Lang, D. V. Karaivanov, H. Burešova, V. Kovalenko, M. Bongrand, E. Chauveau, Pavel P. Povinec, A. Žukauskas, A. Rebii, F. Nova, J. K. Sedgbeer, B. Morgan, A. Remoto, A. Basharina-Freshville, M. Kauer, R. B. Pahlka, Ruben Saakyan, F. Mauger, Guillaume Lutter, Karel Smolek, X. Garrido, B. Soulé, S. Calvez, A. A. Klimenko, G. Oliviéro, V.I. Tretyak, R. L. Flack, Michele Cascella, Vl. I. Tretyak, R. Hodák, S. Söldner-Rembold, Yu. Shitov, P. Loaiza, Ch. Marquet, B. Guillon, A.A. Smolnikov, M. Zampaolo, S. Blot, M. Spavorova, I. Moreau, E. Birdsall, V. Palušová, Joleen Pater, A. Jeremie, F. Piquemal, M. Macko, F. Delalee, S. De Capua
Publikováno v:
Rakhimov, A V, Barabash, A S, Basharina-Freshville, A, Blot, S, Bongrand, M, Bourgeois, C, Breton, D, Breier, R, Birdsall, E, Brudanin, V B, Burešova, H, Busto, J, Calvez, S, Cascella, M, Cerna, C, Cesar, J P, Chauveau, E, Chopra, A, Claverie, G, De Capua, S, Delalee, F, Duchesneau, D, Egorov, V G, Eurin, G, Evans, J J, Fajt, L, Filosofov, D V, Flack, R, Garrido, X, Gomez, H, Guillon, B, Guzowski, P, Hodák, R, Holý, K, Huber, A, Hugon, C, Jeremie, A, Jullian, S, Karaivanov, D V, Kauer, M, Klimenko, A A, Kochetov, O I, Konovalov, S I, Kovalenko, V, Lang, K, Lemière, Y, Le Noblet, T, Liptak, Z, Liu, X R, Loaiza, P, Lutter, G, Maalmi, J, MacKo, M, Mamedov, F, Marquet, C, Mauger, F, Minotti, A, Mirsagatova, A A, Mirzayev, N A, Moreau, I, Morgan, B, Mott, J, Nemchenok, I B, Nomachi, M, Nova, F, Ohsumi, H, Oliviero, G, Pahlka, R B, Pater, J R, Palušová, V, Perrot, F, Piquemal, F, Povinec, P, Pridal, P, Ramachers, Y A, Rebii, A, Remoto, A, Richards, B, Ricol, J S, Rukhadze, E, Rukhadze, N I, Saakyan, R, Sadikov, I I, Salazar, R, Sarazin, X, Sedgbeer, J, Shitov, Y A, Šimkovic, F, Simard, L, Smetana, A, Smolek, K, Smolnikov, A A, Snow, S, Söldner-Rembold, S, Soulé, B, Špavorova, M, Štekl, I, Tashimova, F A, Thomas, J, Timkin, V, Torre, S, Tretyak, V I, Tretyak, V I, Umatov, V I, Vilela, C, Vorobel, V, Warot, G, Waters, D, Zampaolo, M & Zukauskas, A 2019, ' Development of methods for the preparation of radiopure 82 Se sources for the SuperNEMO neutrinoless double-beta decay experiment ', Radiochimica Acta . https://doi.org/10.1515/ract-2019-3129
Radiochim.Acta
Radiochim.Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩
Radiochimica Acta
Radiochimica Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩
Radiochim.Acta
Radiochim.Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩
Radiochimica Acta
Radiochimica Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩
International audience; AbstractA radiochemical method for producing 82Se sources with an ultra-low level of contamination of natural radionuclides (40K, decay products of 232Th and 238U) has been developed based on cation-exchange chromatographic pu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::658b264952ca390cf11a49a41c0ad222
https://pure.manchester.ac.uk/ws/files/139870994/_Radiochimica_Acta_Development_of_methods_for_the_preparation_of_radiopure_82Se_sources_for_the_SuperNEMO_neutrinoless_double_beta_decay_experiment.pdf
https://pure.manchester.ac.uk/ws/files/139870994/_Radiochimica_Acta_Development_of_methods_for_the_preparation_of_radiopure_82Se_sources_for_the_SuperNEMO_neutrinoless_double_beta_decay_experiment.pdf
Autor:
J. Busto, F. Mamedov, T. Suchá, B. Soule, V.B. Brudanin, E. Rukhadze, P. Rulík, I. Svetlík, J. Macl, O.I. Kochetov, K. Smolek, J. Hůlka, D. Lalanne, M. Havelcová, F. Perrot, I. Štekl, G. Warot, R. Noel, P. Loaiza, Rastislav Hodak, M. Žaloudková, F. Piquemal, S. Jullian, J. Mizera, M. Zampaolo
Publikováno v:
J.Phys.G
J.Phys.G, 2019, 46 (11), pp.115105. ⟨10.1088/1361-6471/ab368e⟩
Journal of Physics G: Nuclear and Particle Physics
Journal of Physics G: Nuclear and Particle Physics, 2019, 46 (11), pp.115105. ⟨10.1088/1361-6471/ab368e⟩
J.Phys.G, 2019, 46 (11), pp.115105. ⟨10.1088/1361-6471/ab368e⟩
Journal of Physics G: Nuclear and Particle Physics
Journal of Physics G: Nuclear and Particle Physics, 2019, 46 (11), pp.115105. ⟨10.1088/1361-6471/ab368e⟩
International audience; Radon is one of the main potential sources of background radiation for any rare event experiments like neutrinoless double beta decay or dark matter experiments. The Radon Trapping Facility (RTF) installed in 2004 at the Modan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d572d449dc8b245962dc909514032e6
https://hal.archives-ouvertes.fr/hal-02338244
https://hal.archives-ouvertes.fr/hal-02338244