Zobrazeno 1 - 10
of 20
pro vyhledávání: '"G. R. Cirmi"'
Publikováno v:
Didattica della Matematica, Iss 9, Pp 127-138 (2021)
In questo lavoro si presenta un modulo didattico dal titolo La Lingua Matematica, rivolto a studenti del primo anno di scuola secondaria di secondo grado.Il modulo è stato presentato in classi di Liceo Matematico, ma può essere proposto anche in al
In this paper we prove the existence and uniqueness of the solution to the one and the two obstacles problems associated with a linear elliptic operator, which is non coercive due to the presence of a convection term. We show that the operator is wea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a73e3be2edfe16a338fa2a59a691399
https://hdl.handle.net/20.500.11769/531117
https://hdl.handle.net/20.500.11769/531117
This paper deals with the existence of bounded and locally Hölder continuous weak solutions of a homogeneous Dirichlet problem related to a class of nonlinear fourth-order elliptic equations with strengthened degenerate ellipticity condition.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19efc59a5eea495c608918d2c20cfc0a
https://hdl.handle.net/20.500.11769/532837
https://hdl.handle.net/20.500.11769/532837
We study the existence of a weak solution u of the following nonlinear vectorial Dirichlet problem { u ∈ W 0 1 , 2 ( Ω , R N ) − ∑ i = 1 n D i A i ν ( x , u , D u ) = − ∑ i = 1 n D i ( ∑ j = 1 N E i ν j ( x ) u j ) + f ν ( x ) x ∈
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35de33980ab32fdea97d1b70c67e5e53
http://hdl.handle.net/20.500.11769/461381
http://hdl.handle.net/20.500.11769/461381
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 1333-1350 (2019)
We consider the following boundary value problem $$\begin{array}{} \displaystyle \begin{cases} - {\rm div}{[M(x)\nabla u - E(x) u]} =f(x) & \text{in}~~ {\it\Omega} \\ u =0 & \text{on}~~ \partial{\it\Omega}, \end{cases} \end{array}$$ where Ω is a bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68adbb2cdb8c09ff33292645d1d55133
http://hdl.handle.net/20.500.11769/359823
http://hdl.handle.net/20.500.11769/359823
In this paper we study the existence and regularity of solutions to some nonlinear boundary value problems with non coercive drift. The model problem is 1 $$\begin{aligned} \left\{ \begin{array}{ll} -\mathrm{div}(A(x)\nabla u|\nabla u|^{p-2} )=E(x)\n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e4285bec68e99939f0b63fa4ce67c85
http://hdl.handle.net/20.500.11769/464165
http://hdl.handle.net/20.500.11769/464165
Publikováno v:
Milan Journal of Mathematics. 86:97-104
We give a self-contained and simple approach to prove the existence and uniqueness of a weak solution to a linear elliptic boundary value problem with drift in divergence form. Taking advantage of the method of continuity, we also deal with the relat
Publikováno v:
Mathematical Methods in the Applied Sciences. 41:261-269
We consider the following prototype problem: $$\begin{aligned} \left\{ \begin{aligned}&-\Delta u + M \frac{|\nabla u|^2}{u^\theta }=f&\hbox { in}\ \varOmega \\&u=0&\hbox { on}\ \partial \varOmega \end{aligned}\right. \end{aligned}$$ and we study the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2c9096c562371dbf93508e546cab502
http://hdl.handle.net/20.500.11769/20471
http://hdl.handle.net/20.500.11769/20471