Zobrazeno 1 - 10
of 12
pro vyhledávání: '"G. P. Youvaraj"'
Autor:
S. Pitchai Murugan, G. P. Youvaraj
Publikováno v:
The Journal of Analysis. 31:1057-1079
Autor:
K. Poongothai, G. P. Youvaraj
Publikováno v:
Advances in Operator Theory. 8
Autor:
K. Poongothai, G. P. Youvaraj
Publikováno v:
Complex Variables and Elliptic Equations. 68:878-891
Autor:
S. Pitchai Murugan, G. P. Youvaraj
Publikováno v:
International Journal of Wavelets, Multiresolution and Information Processing.
In signal processing, rational [Formula: see text]-wavelets are preferable than the wavelets corresponding to dyadic MRA because it allows more variations in scale factors of signal components. In this paper, for a rational number [Formula: see text]
Autor:
S. Pitchai Murugan, G. P. Youvaraj
Publikováno v:
Journal of the Australian Mathematical Society. 114:359-377
Gabardo and Nashed [‘Nonuniform multiresolution analyses and spectral pairs’, J. Funct. Anal.158(1) (1998), 209–241] have introduced the concept of nonuniform multiresolution analysis (NUMRA), based on the theory of spectral pairs, in which the
Autor:
G. P. Youvaraj, S. Pitchai Murugan
Publikováno v:
International Journal of Wavelets, Multiresolution and Information Processing. 19
The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: se
Autor:
G. P. Youvaraj, B. Usna Banu
Publikováno v:
Fasciculi Mathematici. 60:29-35
In this paper we study radius of convexity of sections of a class of univalent close-to-convex functions on 𝔻 = {z ∈ ℂ: |z| < 1}. For functions in this class, coefficient bounds, an integral representation and radius of convexity of nth sectio
Autor:
G. P. Youvaraj, S. Pitchai Murugan
Publikováno v:
Asian-European Journal of Mathematics. 14:2150126
The Franklin wavelet (piecewise linear wavelet) is a wavelet function [Formula: see text] with dilation factor 2 which is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for all [Formula: see text]; which is c
Autor:
G. P. Youvaraj, K. Kalaivani
Publikováno v:
Analysis Mathematica. 40:267-285
In [3], we established a necessary and sufficient condition for absolute Hausdorff summability of a double orthogonal series. In this paper, we estimate the order of magnitude for Hausdorff summability of a double orthogonal series under appropriate
Autor:
G. P. Youvaraj, K. Kalaivani
Publikováno v:
Journal of Classical Analysis. :181-188