Zobrazeno 1 - 10
of 15
pro vyhledávání: '"G. Lubczonok"'
Autor:
V. Murali, G. Lubczonok
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 40, Pp 2553-2565 (2003)
This paper considers fuzzy subbundles of a vector bundle. We define the operations sum, product, tensor product, Hom, and intersection of fuzzy subbundles and in each case, we characterize the corresponding flag of vector subbundles. We then propose
Externí odkaz:
https://doaj.org/article/97ec2e7b470a403fb669213936729884
Autor:
F. A. M. Frescura, G. Lubczonok
Publikováno v:
International Journal of Theoretical Physics. 44:35-42
This paper defines basic potentials for contact structure. Contact manifolds that admit a basic potential are shown to have an additional foliated structure of co-dimension 1. The properties of this new foliation, and its relation to the characterist
Autor:
G. Lubczonok, V. Murali
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 40, Pp 2553-2565 (2003)
This paper considers fuzzy subbundles of a vector bundle. We define the operations sum, product, tensor product,Hom, and intersection of fuzzy subbundles and in each case, we characterize the corresponding flag of vector subbundles. We then propose t
Autor:
V. Murali, G. Lubczonok
Publikováno v:
Fuzzy Sets and Systems. 125:201-207
This paper deals with fuzzy subspaces of a vector space in terms of flags. We define the operations sum, product, tensor product, Hom, and intersection of fuzzy subspaces and in each case we characterise the corresponding flag. Some of these have bee
Autor:
G. Lubczonok, F. A. M. Frescura
Publikováno v:
Journal of Mathematical Physics. 36:1413-1425
A calculus for exact symplectic manifolds is presented. It consists of the familiar exterior calculus augmented by a set of operations, algebraic and differential, admitted naturally by the exact symplectic structure of the underlying space. The resu
Autor:
F. A. M. Frescura, G. Lubczonok
Publikováno v:
International Journal of Theoretical Physics. 30:567-582
A co-symplectic structure on the cotangent bundleT*X of an arbitrary manifoldX is defined, and the notion of associated symplectic and co-symplectic structures is introduced. By way of example, the two-dimensional case is considered in some detail. T
Autor:
G. Lubczonok, F. A. M. Frescura
Publikováno v:
International Journal of Theoretical Physics. 29:57-73
A new natural structure on the tangent spaces of a co-tangent bundle is introduced and some of its properties are investigated. This structure is based on a symmetric bilinear form and leads to a geometry that is, in many respects, analogous to the s
Autor:
G. Lubczonok, C.C. Remsing
Publikováno v:
Quaestiones Mathematicae; Vol 26, No 2 (2003); 147-161
unavailable at this time... Mathematics Subject Classification (2000): 03E72, 52A01, 54E35, 53C70, 14M15 Quaestiones Mathematicae 25 (2002), 147-161
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.