Zobrazeno 1 - 10
of 116
pro vyhledávání: '"G. Dimakis"'
Autor:
Daniel J. Diaz, Chengyue Gong, Jeffrey Ouyang-Zhang, James M. Loy, Jordan Wells, David Yang, Andrew D. Ellington, Alexandros G. Dimakis, Adam R. Klivans
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Abstract Engineering stabilized proteins is a fundamental challenge in the development of industrial and pharmaceutical biotechnologies. We present Stability Oracle: a structure-based graph-transformer framework that achieves SOTA performance on accu
Externí odkaz:
https://doaj.org/article/09e8ba873c164e1eb910e28fd655392f
Autor:
Alexandros G. Dimakis
Publikováno v:
Mathematical Aspects of Deep Learning ISBN: 9781009025096
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::293da345f271444106917ce52a54f84e
https://doi.org/10.1017/9781009025096.010
https://doi.org/10.1017/9781009025096.010
Publikováno v:
IEEE Journal on Selected Areas in Communications. 39:18-30
This paper presents a novel compressed sensing (CS) approach to high dimensional wireless channel estimation by optimizing the input to a deep generative network. Channel estimation using generative networks relies on the assumption that the reconstr
Autor:
Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, Peyman Milanfar
Image deblurring is an ill-posed problem with multiple plausible solutions for a given input image. However, most existing methods produce a deterministic estimate of the clean image and are trained to minimize pixel-level distortion. These metrics a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41bdc7caf5b41c370b3c9d2b401bf330
http://arxiv.org/abs/2112.02475
http://arxiv.org/abs/2112.02475
Publikováno v:
2021 IEEE Data Science and Learning Workshop (DSLW).
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods tend to be sensitive to inaccuracies and may lead to poor performance when real systems display complex or
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information and additional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84f254001916c4f1ed616d4454263fe5
http://arxiv.org/abs/2012.08405
http://arxiv.org/abs/2012.08405
Autor:
Gregory Ongie, Rebecca Willett, Alexandros G. Dimakis, Richard G. Baraniuk, Christopher A. Metzler, Ajil Jalal
Recent work in machine learning shows that deep neural networks can be used to solve a wide variety of inverse problems arising in computational imaging. We explore the central prevailing themes of this emerging area and present a taxonomy that can b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b6f834ade575b0aaf7d707794e5dc56
http://arxiv.org/abs/2005.06001
http://arxiv.org/abs/2005.06001
Autor:
Jaeseong Lee, Alexandros G. Dimakis, Jin Soo Park, Christos G. Bampis, Alan C. Bovik, Sung Soo Kim, Mia K. Markey
Publikováno v:
ICASSP
We propose a video compression framework using conditional Generative Adversarial Networks (GANs). We rely on two encoders: one that deploys a standard video codec and another which generates low-level maps via a pipeline of down-sampling, a newly de
Publikováno v:
IET Microwaves, Antennas & Propagation. 12:1890-1894
The Aharonov–Bohm effect is a well-established quantum phenomenon that relates the behaviour of an electron not only to the local electromagnetic field but also to the associated potentials. An important consequence is that electron beams travellin
Publikováno v:
IEEE/ACM Transactions on Networking. 25:676-689
We consider the scenario of broadcasting for real-time applications, such as multi-player games and video streaming, and loss recovery via instantly decodable network coding. The source has a single time slot or multiple time slots to broadcast (pote