Zobrazeno 1 - 10
of 150
pro vyhledávání: '"G. A. Gonçalves"'
Autor:
A. Dal Lin, D. O. Kulek, G. A. Gonçalves, L. Kraft, J. F. C. Neto, G. Vizentainer, M. Pillonetto
Publikováno v:
Microbiology Spectrum, Vol 12, Iss 10 (2024)
Externí odkaz:
https://doaj.org/article/da8f0e3e974a46c1bcb3bc8a00872cc3
Publikováno v:
Trends in Computational and Applied Mathematics, Vol 22, Iss 4 (2021)
The outbreak of COVID-19 has made scientists from all over the world do not measure efforts to understand the dynamics of the disease caused by this coronavirus. Several mathematical models have been proposed to describe the dynamics and make predict
Externí odkaz:
https://doaj.org/article/0d11603438044925b4c29bc9a6172e00
This paper extends the formulation of a data-driven control method - the Optimal Controller Identification (OCI) - to cope with non-minimum phase (NMP) systems, without a priori knowledge of the NMP transmission zero, i.e. without obtaining a prior m
Externí odkaz:
http://arxiv.org/abs/2305.18938
Eco-driving (ED) can be used for fuel savings in existing vehicles, requiring only a few hardware modifications. For this technology to be successful in a dynamic environment, ED requires an online real-time implementable policy. In this work, a dedi
Externí odkaz:
http://arxiv.org/abs/2206.02447
This paper presents a data-driven approach to the design of predictive controllers. The prediction matrices utilized in standard model predictive control (MPC) algorithms are typically constructed using knowledge of a system model such as, state-spac
Externí odkaz:
http://arxiv.org/abs/2104.04972
In this paper, an eco--driving Pontryagin maximum principle (PMP) algorithm is designed for optimal deceleration and gear shifting in trucks based on switching among a finite set of driving modes. The PMP algorithm is implemented and assessed in the
Externí odkaz:
http://arxiv.org/abs/2104.03797
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Big Data, Vol 9, Iss 1, Pp 1-25 (2022)
Abstract This article addresses the elaboration of a canonical model, involving methods, techniques, metrics, tools, and Big Data, applied to the knowledge of seasonal climate prediction, aiming at greater dynamics, speed, conciseness, and scalabilit
Externí odkaz:
https://doaj.org/article/c2fc305e7e5e4d3a821c7aa5266979f6
Autor:
Milena B. P. Soares, Renata G. J. Gonçalves, Juliana F. Vasques, Almir J. da Silva-Junior, Fernanda Gubert, Girlaine Café Santos, Thaís Alves de Santana, Gabriela Louise Almeida Sampaio, Daniela Nascimento Silva, Massimo Dominici, Rosalia Mendez-Otero
Publikováno v:
Frontiers in Molecular Neuroscience, Vol 15 (2022)
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available,
Externí odkaz:
https://doaj.org/article/50c9cf848cf44dd1b08bee47fbfd76c8
Autor:
K. B. A. Pimentel, R. S. Oliveira, C. F. Aragão, J. Aquino Júnior, M. E. S. Moura, A. S. Guimarães-e-Silva, V. C. S. Pinheiro, E. G. R. Gonçalves, A. R. Silva
Publikováno v:
Brazilian Journal of Biology, Vol 84 (2022)
Abstract Visceral leishmaniasis (VL) is an infectious disease predominant in countries located in the tropics. The prediction of occurrence of infectious diseases through epidemiologic modeling has revealed to be an important tool in the understandin
Externí odkaz:
https://doaj.org/article/3afa9d51d7084b418a2c52c071e350d2