Zobrazeno 1 - 10
of 31
pro vyhledávání: '"G. A. Banaru"'
Publikováno v:
Дифференциальная геометрия многообразий фигур, Vol 55, Iss 1, Pp 5-13 (2024)
From 1950s, it is known that an almost contact metric structure is induced on an arbitrary oriented hypersurface in an almost Hermitian manifold. In accordance with the definition, an almost Hermitian manifold satisfies the axiom of almost contac
Externí odkaz:
https://doaj.org/article/a12f41cd3ce84686925c7fa9b7a4bce1
Autor:
G. A. Banaru
Publikováno v:
Дифференциальная геометрия многообразий фигур, Vol 54, Iss 1, Pp 14-22 (2023)
The notion of type constancy was introduced by Alfred Gray for nearly Kählerian manifolds and later generalized by Vadim F. Kirichenko and Irina V. Tret’yakova for all Gray — Hervella classes of almost Hermitian manifolds. In the present note,
Externí odkaz:
https://doaj.org/article/d474e4d449904068aa494929930a768f
Autor:
M. B. Banaru, G. A. Banaru
Publikováno v:
Дифференциальная геометрия многообразий фигур, Vol 54, Iss 1, Pp 29-38 (2023)
We mark out the most important results obtained by outstanding Russian geometer Vadim Feodorovich Kirichenko in the theory of almost Hermitian and almost contact metric manifolds.
Externí odkaz:
https://doaj.org/article/859f1892c3914ff18b84b03a44250ff9
Autor:
G. A. Banaru
Publikováno v:
Дифференциальная геометрия многообразий фигур, Iss 51, Pp 7-13 (2020)
Six-dimensional submanifolds of Cayley algebra equipped with an almost Hermitian structure of class W1 W2 W4 defined by means of three-fold vector cross products are considered. As it is known, the class W1 W2 W4 contains all Kählerian,
Externí odkaz:
https://doaj.org/article/4ac2e11d3eb04733910afac5549099cf
Autor:
G. A. Banaru
Publikováno v:
Дифференциальная геометрия многообразий фигур, Iss 50, Pp 18-22 (2019)
The most important achievements of the outstanding Smolensk geometer Lidia Vasil’evna Stepanova are presented.
Externí odkaz:
https://doaj.org/article/e33e5f01042c4d6b94e6f94b70016e2f
Autor:
G. A. Banaru, M. B. Banaru
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 17:1715-1721
Autor:
G. A. Banaru
Publikováno v:
Journal of Mathematical Sciences. 241:245-250
We review the main results of the geometric theory of ordinary differential equations obtained by the prominent Russian geometer N. V. Stepanov (1926–1991). Some results obtained by Stepanov are illustrated by examples of third- and five-order equa
Publikováno v:
Russian Mathematics. 60:73-75
We establish several conditions which are necessary for a quasi-Sasakian hypersurface of a Kahler manifold to be minimal.
Publikováno v:
Moscow University Chemistry Bulletin. 69:5-7
The model of forming chained aggregate of linear molecules by head-to-head and head-to-tale contacts was explored. The discrete distribution function for such aggregates versus number of contacts of one type was found.
Autor:
A. M. Banaru, G. A. Banaru
Publikováno v:
Moscow University Chemistry Bulletin. 67:5-7
It has been shown by numerical experiments that, at any finite set of the type {i1, i2, ..., im} with acceptable sizes of an i-angle aqueous cycle of the (H2O)∞ planar network, the most probable mean size of the cycle is the arithmetical mean of th