Zobrazeno 1 - 6
of 6
pro vyhledávání: '"G��ttsche, Lothar"'
Autor:
G��ttsche, Lothar
We formulate conjectural blowup formulas for Segre and Verlinde numbers on moduli spaces of sheaves on projective surfaces $S$ with $p_g(S)>0$ and $b_1(S)=0$. As applications we give a give a conjectural formula for the Donaldson invariants of $S$ in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76ee43db0281bca61ab778dfa80f7bf4
http://arxiv.org/abs/2109.13144
http://arxiv.org/abs/2109.13144
Autor:
G��ttsche, Lothar, Kool, Martijn
We conjecture a formula for the refined $\mathrm{SU}(3)$ Vafa-Witten invariants of any smooth surface $S$ satisfying $H_1(S,\mathbb{Z}) = 0$ and $p_g(S)>0$. The unrefined formula corrects a proposal by Labastida-Lozano and involves unexpected algebra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e77d7f2a4248d20e88469845470c33ff
http://arxiv.org/abs/1808.03245
http://arxiv.org/abs/1808.03245
Autor:
G��ttsche, Lothar, Shende, Vivek
For an ample line bundle on an Abelian or K3 surface, minimal with respect to the polarization, the relative Hilbert scheme of points on the complete linear system is known to be smooth. We give an explicit expression in quasi-Jacobi forms for the ch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57b6e8ceb121ea6c05d2356bd77f40ad
http://arxiv.org/abs/1307.4316
http://arxiv.org/abs/1307.4316
Autor:
G��ttsche, Lothar, Zagier, Don
We prove structure theorems for the Donaldson invariants of 4-manifolds with b_+=1, similar to those of Kronheimer and Mrowka in the case b_+>1: We show that for a 4-manifold with b_+=1 and two different period points F, G on the boundary of the posi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cba6ac7bd1c2ab11b8a1467f5303c264
http://arxiv.org/abs/alg-geom/9612020
http://arxiv.org/abs/alg-geom/9612020
We compute the Gromov-Witten invariants of the projective plane blown up in r general points. These are determined by associativity from r+1 intial values. Applications are given to the enumeration of rational plane curves with prescribed multiplicit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6407d1d01c7b807cf9c320f5c15fcf37
http://arxiv.org/abs/alg-geom/9611012
http://arxiv.org/abs/alg-geom/9611012
Autor:
Ellingsrud, Geir, G��ttsche, Lothar
The paper determines the change of moduli spaces of rank $2$ sheaves on surfaces with $p_g=0$ under change of polarization and the corresponding change of the Donaldson invariants. In this revised version we have made some minor stylistic changes in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb35da52aef57c3c1afb454f9cd56d6e
http://arxiv.org/abs/alg-geom/9410005
http://arxiv.org/abs/alg-geom/9410005