Zobrazeno 1 - 10
of 138
pro vyhledávání: '"Głąb, Szymon"'
Given an ideal $\mathcal{I}$ on the nonnegative integers $\omega$ and a Polish space $X$, let $\mathscr{L}(\mathcal{I})$ be the family of subsets $S\subseteq X$ such that $S$ is the set of $\mathcal{I}$-limit points of some sequence taking values in
Externí odkaz:
http://arxiv.org/abs/2407.12160
Every countable graph can be built from finite graphs by a suitable infinite process, either adding new vertices randomly or imposing some rules on the new edges. On the other hand, a profinite topological graph is built as the inverse limit of finit
Externí odkaz:
http://arxiv.org/abs/2209.14626
Autor:
Glab, Szymon, Marchwicki, Jacek
The main result is that the celebrated Guthrie-Nymann's Cantorval has comeager set of uniqueness. On the other hand many other Cantorvals have meager set of uniqueness.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/2203.12479
Autor:
Głab, Szymon, Gordinowicz, Przemysław
Geschke proved that there is clopen graph on $2^\omega$ which is 3-saturated, but the clopen graphs on $2^\omega$ do not even have infinite subgraphs that are 4-saturated; however there is $F_\sigma$ graph that is $\omega_1$-saturated. It turns out t
Externí odkaz:
http://arxiv.org/abs/2201.10932
We show that an ideal $\mathcal{I}$ on the positive integers is meager if and only if there exists a bounded nonconvergent real sequence $x$ such that the set of subsequences [resp. permutations] of $x$ which preserve the set of $\mathcal{I}$-limit p
Externí odkaz:
http://arxiv.org/abs/2109.05266
Publikováno v:
Ann. Pure Appl. Logic 172 (2021), no. 8, 102976
For a family $\mathcal{F}\subseteq \omega^\omega$ we define the ideal $\mathcal{I}(\mathcal{F})$ on $\omega\times\omega$ to be the ideal generated by the family $\{A\subseteq \omega\times\omega:\exists f\in \mathcal{F}\,\forall^\infty n\, (|\{k:(n,k)
Externí odkaz:
http://arxiv.org/abs/2011.03777
Autor:
Głab, Szymon, Marchwicki, Jacek
Let $\mu$ be a purely atomic measure. By $f_\mu:[0,\infty)\to\{0,1,2,\dots,\omega,\mathfrak{c}\}$ we denote its cardinal function $f_{\mu}(t)=\vert\{A\subset\mathbb N:\mu(A)=t\}\vert$. We study the problem for which sets $R\subset\{0,1,2,\dots,\omega
Externí odkaz:
http://arxiv.org/abs/1911.01206
Autor:
Balcerzak, Marek, Głab, Szymon
We prove that the existence of a Borel lower density operator (a Borel lifting) with respect to the $\sigma$-ideal of countable sets, for an uncountable Polish space, is equivalent to the Continuum Hypothesis.
Externí odkaz:
http://arxiv.org/abs/1903.02397
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.