Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Günyüz, Ozan"'
Autor:
Bojnik, Afrim, Günyüz, Ozan
We prove a central limit theorem for random currents of integration along the zero divisors of standard Gaussian holomorphic sections in a sequence of holomorphic line bundles with Hermitian metrics of class $\mathscr{C}^{3}$ over a compact K\"{a}hle
Externí odkaz:
http://arxiv.org/abs/2405.03479
Autor:
Günyüz, Ozan
This article addresses an equidistribution problem concerning the zeros of systems of random holomorphic sections of positive line bundles on compact K\"{a}hler manifolds and random polynomials on $\mathbb{C}^{m}$ in the setting of a compact subset.
Externí odkaz:
http://arxiv.org/abs/2402.14631
Random Systems of Holomorphic Sections of a Sequence of Line bundles on Compact K\'{a}hler Manifolds
Autor:
Bojnik, Afrim, Günyüz, Ozan
This paper primarily establishes a novel asymptotic variance estimate for smooth linear statistics associated with zero sets of systems of random holomorphic sections in a sequence of positive Hermitian holomorphic line bundles on a compact K\"ahler
Externí odkaz:
http://arxiv.org/abs/2401.08243
Autor:
Günyüz, Ozan
Publikováno v:
Sbornik Mathematics(2024)
We study equidistribution problem of zeros in relation to a sequence of $Z$-asymptotically Chebyshev polynomials on $\mathbb{C}^{m}$. We use certain results obtained in a very recent work of Bayraktar, Bloom and Levenberg and have an equidistribution
Externí odkaz:
http://arxiv.org/abs/2206.14290
Autor:
Bojnik, Afrim, Günyüz, Ozan
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 November 2024 539(1) Part 1
Autor:
Günyüz, Ozan
This paper primarily concerns the variance estimate of zeros of systems of random holomorphic sections associated with a sequence of smooth Hermitian holomorphic line bundles on a compact Kahler manifold X. The probability measures taken into conside
Externí odkaz:
http://arxiv.org/abs/2201.11395
Publikováno v:
Journal of Mathematical Analysis(2023)
The primary objective of this paper is to study core sets in the setting of m-subharmonic functions on the class of (non-compact) Kahler manifolds. Core sets are investigated in different aspects by considering various classes of plurisubharmonic fun
Externí odkaz:
http://arxiv.org/abs/2201.10403
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 September 2023 525(2)
Autor:
Günyüz, Ozan, Zakharyuta, Vyacheslav
Publikováno v:
Banach Center Publications 107(2015), 149-157
Let $K$ be a compact set in $\mathbb{C}$, $f$ a function analytic in $\overline{\mathbb{C}}\smallsetminus K$ vanishing at $\infty $. Let $% f\left( z\right) =\sum_{k=0}^{\infty }a_{k}\ z^{-k-1}$ be its Taylor expansion at $\infty $, and $H_{s}\left(
Externí odkaz:
http://arxiv.org/abs/1609.00218
Autor:
Günyüz, Ozan, Zakharyuta, Vyacheslav
Publikováno v:
Mathematical Notes (2019)
Let $K\subset \mathbb{C}$ be a polynomially convex compact set, $f$ be a function analytic in a domain $\overline{\mathbb{C}}\smallsetminus K$ with Taylor expansion $f\left( z\right) =\sum_{k=0}^{\infty }\frac{a_{k}}{z^{k+1}} $ at $\infty $, and $H_{
Externí odkaz:
http://arxiv.org/abs/1606.00186