Zobrazeno 1 - 10
of 1 902
pro vyhledávání: '"Günter M"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 7 (2019)
Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $X$ with $\ell n$ points in $\mathbb{R}^{d}$ that is colored by $m$ different colors can be partitioned into $n$ subsets of $\ell$ points each, such that each subset contains po
Externí odkaz:
https://doaj.org/article/e9a02cd9bc99489fb4c341031140e565
Publikováno v:
Archiv der Mathematik 121 (2023), 559-601
We survey Jean-Louis Loday's vertex description of the associahedron, and its far reaching influence in combinatorics, discrete geometry and algebra. We present in particular four topics were it plays a central role: lattice congruences of the weak o
Externí odkaz:
http://arxiv.org/abs/2305.08471
Autor:
Sinn, Rainer, Ziegler, Günter M.
In his first mathematical paper, published in 1895 when he was 18, Edmund Landau suggested a new way to determine the winner of a chess tournament by not simply adding for each player the fixed number of points they would get for each win or draw, bu
Externí odkaz:
http://arxiv.org/abs/2210.17300
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011)
Any continuous map of an $N$-dimensional simplex $Δ _N$ with colored vertices to a $d$-dimensional manifold $M$ must map $r$ points from disjoint rainbow faces of $Δ _N$ to the same point in $M$, assuming that $N≥(r-1)(d+1)$, no $r$ vertices of $
Externí odkaz:
https://doaj.org/article/a365668d622e488dadc5c497565191c5
Robertson (1988) suggested a model for the realization space of a convex d-dimensional polytope and an approach via the implicit function theorem, which -- in the case of a full rank Jacobian -- proves that the realization space is a manifold of dime
Externí odkaz:
http://arxiv.org/abs/2007.00645
Autor:
Blagojević, Pavle V. M., Cohen, Frederick R., Crabb, Michael C., Lück, Wolfgang, Ziegler, Günter M.
The equivariant cohomology of the classical configuration space $F(\mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth
Externí odkaz:
http://arxiv.org/abs/2004.12350
Autor:
Doolittle, Joseph, Labbé, Jean-Philippe, Lange, Carsten E. M. C., Sinn, Rainer, Spreer, Jonathan, Ziegler, Günter M.
For $3$-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polyno
Externí odkaz:
http://arxiv.org/abs/1910.05241
The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as the testing ground for methods from equivariant algebraic topol
Externí odkaz:
http://arxiv.org/abs/1905.07715
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.