Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Gómez, Ivana"'
In this work we characterize the sets $E\subset X$ for which there is some $\alpha>0$ such that the function $d(\cdot,E)^{-\alpha}$ belongs to the Muckenhoupt class $A_1(X,d,\mu)$, where $(X,d,\mu)$ is a space of homogeneous type, extending a recent
Externí odkaz:
http://arxiv.org/abs/2406.14369
We obtain a necessary and sufficient condition on the Haar coefficients of a real function $f$ defined on $\mathbb{R}^+$ for the Lipschitz $\alpha$ regularity of $f$ with respect to the ultrametric $\delta(x,y)=\inf \{|I|: x, y\in I; I\in\mathcal{D}\
Externí odkaz:
http://arxiv.org/abs/2403.00677
In this paper we use the neighborhood topology generated by affinities between pairs of points in a set, in orden to explore the underlying dynamics of connectivity by thresholding of the affinity. We apply the method to the connectivity provided by
Externí odkaz:
http://arxiv.org/abs/2402.15946
In this article we aim to obtain the Fisher Riemann geodesics for nonparametric families of probability densities as a weak limit of the parametric case with increasing number of parameters.
Comment: 26 pages, 11 figures
Comment: 26 pages, 11 figures
Externí odkaz:
http://arxiv.org/abs/2402.11071
Publikováno v:
Opuscula Math. 44, no. 2 (2024), 157-165
In this note we explore the structure of the diffusion metric of Coifman-Lafon determined by fractional dyadic Laplacians. The main result is that, for each ${t>0}$, the diffusion metric is a function of the dyadic distance, given in $\mathbb{R}^+$ b
Externí odkaz:
http://arxiv.org/abs/2303.06694
Autor:
Gomez, Ivana M., Uriarte, Maia, Fernandez, Gimena, Barrile, Franco, Castrogiovanni, Daniel, Cantel, Sonia, Fehrentz, Jean-Alain, De Francesco, Pablo N., Perello, Mario
Publikováno v:
In Molecular Metabolism December 2024 90
Autor:
Aimar, Hugo, Gómez, Ivana
We provide sufficient conditions on the profile $\varphi$, on the sequence of random variables $\varepsilon_j>0$ and on the sequence of random vectors $y_j\in\mathbb{R}^n$ such that $\mathscr{E}\left(\frac{1}{\varepsilon_j^n(\omega)}\int_{z\in\mathbb
Externí odkaz:
http://arxiv.org/abs/2101.07867
Autor:
Aimar, Hugo, Gómez, Ivana
We use Cram\'er-Chernoff type estimates in order to study the Calder\'on-Zygmund structure of the kernels $\sum_{I\in\mathcal{D}}a_I(\omega)\psi_I(x)\psi_I(y)$ where $a_I$ are subgaussian independent random variables and $\{\psi_I: I\in\mathcal{D}\}$
Externí odkaz:
http://arxiv.org/abs/2101.07863
Autor:
Aimar, Hugo, Gómez, Ivana
Starting from the approach to the Laplacian with respect to coupling measures and undirected weighted graphs, we provide a setting for a general point of view for a Kirchhoff type divergence and a Laplace operators built on the trivial gradient of or
Externí odkaz:
http://arxiv.org/abs/2010.02306
Using the technique of the metrization theorem of uniformities with countable bases, in this note we provide, test and compare an explicit algorithm to produce a metric $d(x,y)$ between the vertices $x$ and $y$ of an affinity weighted undirected grap
Externí odkaz:
http://arxiv.org/abs/2008.00569