Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Gérard Letac"'
Autor:
Shaul K. Bar-Lev, Gérard Letac
Publikováno v:
Metrika. 86:83-90
Publikováno v:
Journal of the American Statistical Association. :1-14
Gaussian graphical models are relevant tools to learn conditional independence structure between variables. In this class of models, Bayesian structure learning is often done by search algorithms over the graph space. The conjugate prior for the prec
Autor:
Hélène Massam, Gérard Letac
Publikováno v:
Kybernetika. :1063-1080
Autor:
Gérard Letac
Consider a measure $\mu$ on $\R^n$ generating a natural exponential family $F(\mu)$ with variance function $V_{F(\mu)}(m)$ and Laplace transform $$ \exp(\ell_{\mu}(s))=\int_{\R^n} \exp(-\)\mu(dx).$$ A dual measure $\mu^*$ satisfies $-\ell'_{\mu^*}(-\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c62f070b688be3339ee3c823452ce4a
http://arxiv.org/abs/2104.05510
http://arxiv.org/abs/2104.05510
Autor:
Gérard Letac
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030802080
GSI
GSI
Curved exponential families are so general objects that they seem to have no interesting universal properties. However Abram Kagan [1] discovered in 1985 a remarkable inequality on their Fisher information. This note gives a modern presentation of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b1cf7296b2c10e410ea91ea37b72dd51
https://doi.org/10.1007/978-3-030-80209-7_36
https://doi.org/10.1007/978-3-030-80209-7_36
Publikováno v:
Statistics & Probability Letters. 133:38-41
Let P be a probability on the real line generating a natural exponential family ( P t ) t ∈ R . We show that the property that t is a median of P t for all t characterizes P as the standard Gaussian law N ( 0 , 1 ) .
Autor:
Hélène Massam, Gérard Letac
Publikováno v:
Journal of Multivariate Analysis. 163:96-110
The problem considered in this paper is to find when the non-central Wishart distribution, defined on the cone P d ¯ of positive semidefinite matrices of order d and with a real-valued shape parameter p , does exist. This can be reduced to the study
Autor:
Jacek Wesołowski, Gérard Letac
Publikováno v:
Journal of Multivariate Analysis
Journal of Multivariate Analysis, Elsevier, 2020, 175, pp.104559-. ⟨10.1016/j.jmva.2019.104559⟩
Journal of Multivariate Analysis, Elsevier, 2020, 175, pp.104559-. ⟨10.1016/j.jmva.2019.104559⟩
In Sabot and Tarres (2015), the authors have explicitly computed the integral S T Z n = ∫ exp ( − 〈 x , y 〉 ) ( det M x ) − 1 ∕ 2 d x where M x is a symmetric matrix of order n with fixed non-positive off-diagonal coefficients and with di
Let $P_0$ be a probability on the real line generating a natural exponential family $(P_t)_{t\in \mathbb {R}}$. Fix $\alpha$ in $ (0,1).$ We show that the property that $P_t((-\infty,t)) \leq \alpha \leq P_t((-\infty,t])$ for all $t$ implies that the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7cd81e55586c95f31232f327da6e33aa
http://arxiv.org/abs/1810.11917
http://arxiv.org/abs/1810.11917
Autor:
Gérard Letac, Mauro Piccioni
Publikováno v:
Bernoulli
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2018, 24 (1), pp.1-29. ⟨10.3150/15-bej765⟩
Bernoulli 24, no. 1 (2018), 1-29
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2018, 24 (1), pp.1-29. ⟨10.3150/15-bej765⟩
Bernoulli 24, no. 1 (2018), 1-29
If $\alpha$ is a probability on $\mathbb{R}^{d}$ and $t>0$, the Dirichlet random probability $P_{t}\sim\mathcal{D}(t\alpha)$ is such that for any measurable partition $(A_{0},\ldots,A_{k})$ of $\mathbb{R}^{d}$ the random variable $(P_{t}(A_{0}),\ldot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f1eb2b275a6d0a976a976f99d50a28bd
http://hdl.handle.net/11573/1111442
http://hdl.handle.net/11573/1111442