Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Géométrie algébrique dérivée"'
Autor:
Monier, Ludovic
Publikováno v:
Algebraic Geometry [math.AG]. Université Paul Sabatier-Toulouse III, 2022. English. ⟨NNT : 2022TOU30117⟩
In this thesis, we study a variation of the graded loop space construction for mixed graded derived schemes endowed with a Frobenius lift. We develop a theory of derived Frobenius lifts on a derived stack which are homotopy theoretic analogues of str
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4074::97cc4b015954988630c6fea51767bf34
https://theses.hal.science/tel-03848045/file/2022TOU30117a.pdf
https://theses.hal.science/tel-03848045/file/2022TOU30117a.pdf
Autor:
Pippi, Massimo
Publikováno v:
Géométrie algébrique [math.AG]. Université Paul Sabatier-Toulouse III, 2020. Français. ⟨NNT : 2020TOU30049⟩
The aim of this thesis is to study the dg categories of singularities Sing(X, s) of pairs (X, s), where X is a scheme and s is a global section of some vector bundle over X. Sing(X, s) is defined as the kernel of the dg functor from Sing(X0) to Sing(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::788e1bbed27e9c2ba12471e855902cc3
https://hal.archives-ouvertes.fr/tel-02864842v2/document
https://hal.archives-ouvertes.fr/tel-02864842v2/document
Autor:
Pippi, Massimo
Publikováno v:
Géométrie algébrique [math.AG]. Université Paul Sabatier-Toulouse III, 2020. Français. ⟨NNT : 2020TOU30049⟩
Algebraic Geometry [math.AG]. Université Toulouse 3-Paul Sabatier, 2020. English
Algebraic Geometry [math.AG]. Université Toulouse 3-Paul Sabatier, 2020. English
The aim of this thesis is to study the dg categories of singularities Sing(X, s) of pairs (X, s), where X is a scheme and s is a global section of some vector bundle over X. Sing(X, s) is defined as the kernel of the dg functor from Sing(X0) to Sing(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::788e1bbed27e9c2ba12471e855902cc3
https://hal.archives-ouvertes.fr/tel-02864842v2/document
https://hal.archives-ouvertes.fr/tel-02864842v2/document
Autor:
Ferreira Antonio, Jorge
Publikováno v:
Algebraic Geometry [math.AG]. Université Paul Sabatier-Toulouse III, 2019. English. ⟨NNT : 2019TOU30040⟩
In this thesis, we study different aspects of derived k-analytic geometry. Namely, we extend the theory of classical formal models for rigid k-analytic spaces to the derived setting. Having a theory of derived formal models at our disposal we proceed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::83bc285d197597e60b43798acb2dd772
https://tel.archives-ouvertes.fr/tel-02893895/file/2019TOU30040B.pdf
https://tel.archives-ouvertes.fr/tel-02893895/file/2019TOU30040B.pdf
Autor:
Ferreira Antonio, Jorge
Publikováno v:
Algebraic Geometry [math.AG]. Université Paul Sabatier-Toulouse III, 2019. English. ⟨NNT : 2019TOU30040⟩
In this thesis, we study different aspects of derived k-analytic geometry. Namely, we extend the theory of classical formal models for rigid k-analytic spaces to the derived setting. Having a theory of derived formal models at our disposal we proceed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::83bc285d197597e60b43798acb2dd772
https://tel.archives-ouvertes.fr/tel-02893895/file/2019TOU30040B.pdf
https://tel.archives-ouvertes.fr/tel-02893895/file/2019TOU30040B.pdf
Autor:
Bach, Samuel
La L-théorie classique d'un anneau commutatif est construite à partir des formes quadratiques sur cet anneau modulo une relation d'équivalence lagrangienne. Nous construisons la L-théorie dérivée, à partir des formes quadratiques $n$-décalée
Externí odkaz:
http://www.theses.fr/2017MONTS013/document
Autor:
Bach, Samuel
Publikováno v:
Géométrie algébrique [math.AG]. Université Montpellier, 2017. Français. ⟨NNT : 2017MONTS013⟩
The classical L-theory of a commutative ring is built from the quadratic forms over this ring modulo a lagrangian equivalence relation.We build the derived L-theory from the n-shifted quadratic forms on a derived commutative ring. We show that forms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::da3d08170c8f6cd1f5d8dc949aba1aa2
https://tel.archives-ouvertes.fr/tel-01878208/file/BACH_2017_archivage_cor.pdf
https://tel.archives-ouvertes.fr/tel-01878208/file/BACH_2017_archivage_cor.pdf
Autor:
Melani, Valerio
Dans cette thèse, on définit et on étudie les notions de structure de Poisson et coïsotrope sur un champ dérivé, dans le contexte de la géométrie algébrique dérivée. On considère deux présentations différentes de structure de Poisson :
Externí odkaz:
http://www.theses.fr/2016USPCC299/document