Zobrazeno 1 - 10
of 992
pro vyhledávání: '"Gäta G."'
Publikováno v:
Il Foro Italiano, 1979 Jan 01. 102, 503/504-505/506.
Externí odkaz:
https://www.jstor.org/stable/23170524
Autor:
Razavi-Shearer, D., Child, H., Razavi-Shearer, K., Voeller, A., Razavi, H., Buti, M., Tacke, F., Terrault, N., Zeuzem, S., Abbas, Z., Aghemo, A., Akarca, U.S., Al Masri, N., Alalwan, A., Blomé, M. Alanko, Jerkeman, A., Aleman, S., Kamal, H., Alghamdi, A., Alghamdi, M., Alghamdi, S., Al-Hamoudi, W., Ali, E., Aljumah, A., Altraif, I., Amarsanaa, J., Asselah, T., Baatarkhuu, O., Babameto, A., Ben-Ari, Z., Berg, T., Biondi, M., Braga, W., Brandão-Mello, C., Brown, R., Brunetto, M., Cabezas, J., Cardoso, M., Martins, A., Chan, H.L.Y., Cheinquer, H., Chen, C.-J., Yang, H.-I., Chen, P.-J., Chien, C.-H., Chuang, W.-L., Garza, L. Cisneros, Coco, B., Coffin, C., Coppola, N., Cornberg, M., Craxi, A., Crespo, J., Cuko, L., De Ledinghen, V., Duberg, A.-S., Etzion, O., Ferraz, M.L., Ferreira, P., Forns, X., Foster, G., Fung, J., Gaeta, G., García-Samaniego, J., Genov, J., Gheorghe, L., Gholam, P., Gish, R., Glenn, J., Hamid, S., Hercun, J., Hsu, Y.-C., Hu, C.-C., Huang, J.-F., Idilman, R., Jafri, W., Janjua, N., Jelev, D., Jia, J., Kåberg, M., Kaita, K., Kao, J.-H., Khan, A., Kim, D.Y., Kondili, L., Lagging, M., Lampertico, P., Lázaro, P., Lazarus, J.V., Lee, M.-H., Lim, Y.-S., Lobato, C., Macedo, G., Marinho, R., Marotta, P., Mendes-Correa, M.C., Méndez-Sánchez, N., Navas, M.-C., Ning, Q., Örmeci, N., Orrego, M., Osiowy, C., Pan, C., Pessoa, M., Piracha, Z., Pop, C., Qureshi, H., Raimondo, G., Ramji, A., Ribeiro, S., Ríos-Hincapié, C., Rodríguez, M., Rosenberg, W., Roulot, D., Ryder, S., Saeed, U., Safadi, R., Shouval, D., Sanai, F., Sanchez-Avila, J.F., Santantonio, T., Sarrazin, C., Seto, W.-K., Simonova, M., Tanaka, J., Tergast, T., Tsendsuren, O., Valente, C., Villalobos-Salcedo, J.M., Waheed, Y., Wong, G., Wong, V., Yip, T., Wu, J.-C., Yu, M.-L., Yuen, M.-F., Yurdaydin, C., Zuckerman, E.
Publikováno v:
In Journal of Hepatology February 2024 80(2):232-242
Autor:
Ferraioli, D. Catalano, Gaeta, G.
We consider the theory of \emph{twisted symmetries} of differential equations, in particular $\lambda$ and $\mu$-symmetries, and discuss their geometrical content. We focus on their interpretation in terms of gauge transformations on the one hand, an
Externí odkaz:
http://arxiv.org/abs/2002.02269
Autor:
Buehler, Pierre
Publikováno v:
Revue de Théologie et de Philosophie, 1986 Jan 01. 118(1), 86-87.
Externí odkaz:
https://www.jstor.org/stable/44356340
Autor:
Gaeta, G.
Publikováno v:
J. Math. Phys. 56 (2015), 083505
In a previous paper we have discussed how the Landau potential (entering in Landau theory of phase transitions) can be simplified using the Poincar\'e normalization procedure. Here we apply this approach to the Landau-deGennes functional for the isot
Externí odkaz:
http://arxiv.org/abs/1510.05446
Autor:
Gaeta, G.
Publikováno v:
J. Math. Phys. 56 (2015), 083504
We discuss a procedure to simplify the Landau potential, based on Michel's reduction to orbit space and Poincar\'e normalization procedure; and illustrate it by concrete examples. The method makes use, as in Poincar\'e theory, of a chain of near-iden
Externí odkaz:
http://arxiv.org/abs/1510.05443
Autor:
Catalano Ferraioli, D., Gaeta, G.
Publikováno v:
In Journal of Geometry and Physics May 2020 151
We specialize Olver's and Rosenau's side condition heuristics for the determination of particular invariant sets of ordinary differential equations. It turns out that side conditions of so-called LaSalle type are of special interest. Moreover we put
Externí odkaz:
http://arxiv.org/abs/1406.4111
Autor:
Cicogna, G., Gaeta, G.
Publikováno v:
J. Phys. A: Math. Gen. 34, 491 (2001)
When we consider a differential equation $\Delta=0$ whose set of solutions is ${{\cal S}}_\Delta$, a Lie-point exact symmetry of this is a Lie-point invertible transformation $T$ such that $T({{\cal S}}_\Delta)={{\cal S}}_\Delta$, i.e. such that any
Externí odkaz:
http://arxiv.org/abs/1309.2407
Publikováno v:
J. Phys. A: Math. Gen. 5065 (1998)
We discuss how the presence of a suitable symmetry can guarantee the perturbative linearizability of a dynamical system - or a parameter dependent family - via the Poincar\'e Normal Form approach. We discuss this at first formally, and later pay atte
Externí odkaz:
http://arxiv.org/abs/1309.2405