Zobrazeno 1 - 10
of 107
pro vyhledávání: '"G, Rangaraj"'
Autor:
Sourav Malakar, Saptarsi Goswami, Bhaswati Ganguli, Amlan Chakrabarti, Sugata Sen Roy, K. Boopathi, A. G. Rangaraj
Publikováno v:
Machine Learning and Knowledge Extraction, Vol 3, Iss 4, Pp 946-965 (2021)
Complex weather conditions—in particular clouds—leads to uncertainty in photovoltaic (PV) systems, which makes solar energy prediction very difficult. Currently, in the renewable energy domain, deep-learning-based sequence models have reported be
Externí odkaz:
https://doaj.org/article/4cecab61e78a4827b7ccdcd42902c09e
Autor:
S. M. Revathy, A. G. Rangaraj, Y. Srinath, K. Boopathi, A. Shobana Devi, K. Balaraman, D. M. Reddy Prasad
Publikováno v:
International Journal of Sustainable Energy, Vol 40, Iss 8, Pp 806-820 (2021)
The current research objective is to explore changes in solar radiation variables across the Indian region during the lock-down period. Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) were co
Externí odkaz:
https://doaj.org/article/a09354c6cc6840f49f4e635ca26dc371
Autor:
Sourav Malakar, Saptarsi Goswami, Bhaswati Ganguli, Amlan Chakrabarti, Sugata Sen Roy, K. Boopathi, A. G. Rangaraj
Publikováno v:
Energies, Vol 15, Iss 10, p 3568 (2022)
Accurate short-term solar forecasting is challenging due to weather uncertainties associated with cloud movements. Typically, a solar station comprises a single prediction model irrespective of time and cloud condition, which often results in subopti
Externí odkaz:
https://doaj.org/article/1f3092adb519407eaf7735f572eb45e0
Autor:
Sugata Sen Roy, Bhaswati Ganguli, K. Boopathi, A. G. Rangaraj, Sourav Malakar, Amlan Chakrabarti, Saptarsi Goswami
Publikováno v:
Machine Learning and Knowledge Extraction, Vol 3, Iss 47, Pp 946-965 (2021)
Machine Learning and Knowledge Extraction; Volume 3; Issue 4; Pages: 946-965
Machine Learning and Knowledge Extraction; Volume 3; Issue 4; Pages: 946-965
Complex weather conditions—in particular clouds—leads to uncertainty in photovoltaic (PV) systems, which makes solar energy prediction very difficult. Currently, in the renewable energy domain, deep-learning-based sequence models have reported be
Autor:
Y. Srinath, K. Boopathi, D.M. Reddy Prasad, K. Balaraman, S. M. Revathy, A. G. Rangaraj, A. Shobana Devi
Publikováno v:
International Journal of Sustainable Energy. 40:806-820
The current research objective is to explore changes in solar radiation variables across the Indian region during the lock-down period. Global Horizontal Irradiance (GHI), Direct Normal Irradiance ...
Publikováno v:
Soft Computing. 24:12391-12411
Wind power forecasting has gained significant attention due to advances in wind energy generation in power frameworks and the uncertain nature of wind. In this manner, to maintain an affordable, reliable, economical, and dependable power supply, accu
Publikováno v:
Data Management, Analytics and Innovation ISBN: 9789811629365
Data Management, Analytics and Innovation
Data Management, Analytics and Innovation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b3edc8eb683b4ceef05592462eef3956
https://doi.org/10.1007/978-981-16-2937-2_19
https://doi.org/10.1007/978-981-16-2937-2_19
Autor:
Krithika Vijayakumar, N. Sheelarani, Y. Srinath, K. Boopathi, A. G. Rangaraj, K. Balaraman, S. M. Revathy
Publikováno v:
Data Management, Analytics and Innovation ISBN: 9789811629365
Data Management, Analytics and Innovation
Data Management, Analytics and Innovation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb051f81c987dc43dcca66de95bca906
https://doi.org/10.1007/978-981-16-2937-2_18
https://doi.org/10.1007/978-981-16-2937-2_18
Autor:
Sourav Malakar, Saptarsi Goswami, Sugata Sen Roy, K. Boopathi, A. G. Rangaraj, Bhaswati Ganguli, Amlan Chakrabarti
Publikováno v:
SN Applied Sciences. 3
Long short-term memory (LSTM) models based on specialized deep neural network-based architecture have emerged as an important model for forecasting time-series. However, the literature does not provide clear guidelines for design choices, which affec
Publikováno v:
Computational Methods and Data Engineering ISBN: 9789811568756
As of late, natural contemplations have incited the utilization of wind power as a maintainable energy resource. Still, the biggest test in coordinating wind power into the electric grid is its irregularity. One procedure to manage wind irregularity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e27be282e957107cd2b07d808978fbaf
https://doi.org/10.1007/978-981-15-6876-3_25
https://doi.org/10.1007/978-981-15-6876-3_25