Zobrazeno 1 - 10
of 310
pro vyhledávání: '"G, MacKinnon"'
Autor:
James G. MacKinnon
Publikováno v:
Econometrics and Statistics. 26:52-71
Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for t
Autor:
Russell Davidson, James G. MacKinnon
Publikováno v:
Econometrics, Vol 3, Iss 4, Pp 825-863 (2015)
We study the finite-sample properties of tests for overidentifying restrictions in linear regression models with a single endogenous regressor and weak instruments. Under the assumption of Gaussian disturbances, we derive expressions for a variety of
Externí odkaz:
https://doaj.org/article/d40a6fe2ca5043fca099acff8a34f876
This paper employs response surface regressions based on simulation experiments to calculate asymptotic distribution functions for the Johansen-type likelihood ratio tests for cointegration. These are carried out in the context of the models recently
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04bfd016b89bb08768119abe72b067f4
https://doi.org/10.32920/ryerson.14640264.v1
https://doi.org/10.32920/ryerson.14640264.v1
Autor:
James G. MacKinnon
Publikováno v:
Journal of Econometrics.
Autor:
Matthew D. Webb, James G. MacKinnon
Publikováno v:
Journal of Econometrics. 218:435-450
Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t -tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different varian
Autor:
James G. MacKinnon
Publikováno v:
Canadian Journal of Economics/Revue canadienne d'économique. 52:851-881
In many fields of economics, and also in other disciplines, it is hard to justify the assumption that the random error terms in regression models are uncorrelated. It seems more plausible to assume that they are correlated within clusters, such as ge
Publikováno v:
TP82. TP082 LET IT BE - CLINICAL ADVANCES IN PULMONARY VASCULAR DISEASE: PAH AND BEYOND.
Publikováno v:
MacKinnon, J G, Nielsen, M Ø & Webb, M D 2021, ' Wild Bootstrap and Asymptotic Inference With Multiway Clustering ', Journal of Business and Economic Statistics, vol. 39, no. 2, pp. 505-519 . https://doi.org/10.1080/07350015.2019.1677473
We study two cluster-robust variance estimators (CRVEs) for regression models with clustering in two dimensions and give conditions under which t-statistics based on each of them yield asymptotically valid inferences. In particular, one of the CRVEs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::675fa28f6c7597423dc2a03fb10a1863
https://pure.au.dk/portal/da/publications/wild-bootstrap-and-asymptotic-inference-with-multiway-clustering(5fd2d9b5-311f-4978-b74b-6765c0b73756).html
https://pure.au.dk/portal/da/publications/wild-bootstrap-and-asymptotic-inference-with-multiway-clustering(5fd2d9b5-311f-4978-b74b-6765c0b73756).html
Autor:
Jennifer Woodland, Natasha Hanson, Tracy A. Freeze, Martin G. Mackinnon, Leanne Skerry, Emily Kervin, Rosemary Nunn
Publikováno v:
Can J Hosp Pharm
Background: Sodium polystyrene sulfonate (SPS) is one of the most commonly used treatments for mild hyperkalemia. Other treatments include insulin, sodium bicarbonate, and salbutamol, which may be given alone or in combination. The results of researc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3ce8b363608931e80b4bcd57c0e89aa
https://europepmc.org/articles/PMC8237950/
https://europepmc.org/articles/PMC8237950/
Autor:
James G. MacKinnon, Matthew D. Webb
Publikováno v:
Handbook of Labor, Human Resources and Population Economics ISBN: 9783319573656
Handbook of Labor, Human Resources and Population Economics
Handbook of Labor, Human Resources and Population Economics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::01d3ace7da513ba9b0c964721b447edf
https://doi.org/10.1007/978-3-319-57365-6_43-1
https://doi.org/10.1007/978-3-319-57365-6_43-1