Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Fukuoka, Ryuichi"'
In this work we study extremals on Lie groups $G$ endowed with a left invariant polyhedral Finsler structure. We use the Pontryagin's Maximal Principle (PMP) to find curves on the cotangent bundle of the group, such that its projections on $G$ are ex
Externí odkaz:
http://arxiv.org/abs/2204.02465
Let $M$ be a differentiable manifold, $T_xM$ be its tangent space at $x\in M$ and $TM=\{(x,y);x\in M;y \in T_xM\}$ be its tangent bundle. A $C^0$-Finsler structure is a continuous function $F:TM \rightarrow \mathbb [0,\infty)$ such that $F(x,\cdot):
Externí odkaz:
http://arxiv.org/abs/2004.05427
Publikováno v:
Annali di Matematica Pura ed Applicata, 2020
A $C^0$-Finsler structure is a continuous function $F:TM \rightarrow [0,\infty)$ defined on the tangent bundle of a differentiable manifold $M$ such that its restriction to each tangent space is an asymmetric norm. We use the convolution of $F$ with
Externí odkaz:
http://arxiv.org/abs/1910.14331
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fukuoka, Ryuichi
Publikováno v:
Tohoku Mathematical Journal, Vol. 72, No. 3, (2020), 425-450
Let $M$ be a differentiable manifold and $TM$ be its tangent bundle. A $C^0$-Finsler structure on $M$ is a continuous function $F: TM \rightarrow \mathbb R$ such that its restriction to each tangent space is a norm. In this work we present a large fa
Externí odkaz:
http://arxiv.org/abs/1807.10861
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series, 2020
Let $\varphi: G \times (M,d) \rightarrow (M,d)$ be a left action of a Lie group on a differentiable manifold endowed with a metric $d$ (distance function) compatible with the topology of $M$. Denote $gp:=\varphi(g,p)$. Let $X$ be a compact subset of
Externí odkaz:
http://arxiv.org/abs/1702.01725
Autor:
Fukuoka, Ryuichi, Benetti, Djeison
Let $G$ be a group, $(M,d)$ be a metric space, $X$ be a compact subspace of $M$ and $\varphi:G\times M \rightarrow M$ be a left action by homeomorphisms of $G$ on $M$. Denote $gp=f(g,p)$. The isotropy subgroup of $G$ with respect to $X$ is defined by
Externí odkaz:
http://arxiv.org/abs/1604.07129
Publikováno v:
Journal of Dynamical & Control Systems; Sep2024, Vol. 30 Issue 3, p1-21, 21p
Autor:
Fukuoka, Ryuichi
Publikováno v:
Repositório Institucional da UnicampUniversidade Estadual de CampinasUNICAMP.
Orientador: Francesco Mercuri
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-25T14:01:25Z (GMT). No. of bitstreams: 1 Fukuoka_Ryuichi_
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-25T14:01:25Z (GMT). No. of bitstreams: 1 Fukuoka_Ryuichi_
Externí odkaz:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/307102
Autor:
Fukuoka, Ryuichi
Let M be a differentiable manifold. We say that a tensor field g defined on M is non-regular if g is in some local Lp space or if g is continuous. In this work we define a mollifier smoothing g_t of g that has the following feature: If g is a Riemann
Externí odkaz:
http://arxiv.org/abs/math/0608230