Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Fu Lingzhi"'
Autor:
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sébastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, Štruc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Publikováno v:
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRw 2024)
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some c
Externí odkaz:
http://arxiv.org/abs/2404.10378
Recently, there has been considerable attention towards leveraging large language models (LLMs) to enhance decision-making processes. However, aligning the natural language text instructions generated by LLMs with the vectorized operations required f
Externí odkaz:
http://arxiv.org/abs/2402.14245
Autor:
Liu, Xiaohong, Min, Xiongkuo, Sun, Wei, Zhang, Yulun, Zhang, Kai, Timofte, Radu, Zhai, Guangtao, Gao, Yixuan, Cao, Yuqin, Kou, Tengchuan, Dong, Yunlong, Jia, Ziheng, Li, Yilin, Wu, Wei, Hu, Shuming, Deng, Sibin, Xiao, Pengxiang, Chen, Ying, Li, Kai, Zhao, Kai, Yuan, Kun, Sun, Ming, Cong, Heng, Wang, Hao, Fu, Lingzhi, Zhang, Yusheng, Zhang, Rongyu, Shi, Hang, Xu, Qihang, Xiao, Longan, Ma, Zhiliang, Agarla, Mirko, Celona, Luigi, Rota, Claudio, Schettini, Raimondo, Huang, Zhiwei, Li, Yanan, Wang, Xiaotao, Lei, Lei, Liu, Hongye, Hong, Wei, Chuang, Ironhead, Lin, Allen, Guan, Drake, Chen, Iris, Lou, Kae, Huang, Willy, Tasi, Yachun, Kao, Yvonne, Fan, Haotian, Kong, Fangyuan, Zhou, Shiqi, Liu, Hao, Lai, Yu, Chen, Shanshan, Wang, Wenqi, Wu, Haoning, Chen, Chaofeng, Zhu, Chunzheng, Guo, Zekun, Zhao, Shiling, Yin, Haibing, Wang, Hongkui, Meftah, Hanene Brachemi, Fezza, Sid Ahmed, Hamidouche, Wassim, Déforges, Olivier, Shi, Tengfei, Mansouri, Azadeh, Motamednia, Hossein, Bakhtiari, Amir Hossein, Aznaveh, Ahmad Mahmoudi
This paper reports on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2023. This challenge is to address a major cha
Externí odkaz:
http://arxiv.org/abs/2307.09729
Publikováno v:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2022, pp. 1201-1210
In this work, we introduce Gradient Siamese Network (GSN) for image quality assessment. The proposed method is skilled in capturing the gradient features between distorted images and reference images in full-reference image quality assessment(IQA) ta
Externí odkaz:
http://arxiv.org/abs/2208.04081
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Signal Processing December 2019 165:303-314
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Signal Processing. 165:303-314
This work considers the underwater tracking of an unknown and time-varying number of targets, i.e., acoustic emitters, using passive array sonar systems. This problem becomes more challenging if the signal-to-noise ratio (SNR) of the acoustic emitter
Publikováno v:
2019 IEEE Radar Conference (RadarConf).
This paper considers the tracking problem of a moving emitter, which discontinuously emits certain signals, in a passive sensor system. The aim is to estimate both the kinematic state of the emitter and the discontinuous property of the signal emissi
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.