Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Frydryszak, A. M."'
Publikováno v:
Quantum Inf Process (2019) 18: 84
We derive an explicit expressions for geometric description of state manifold obtained from evolution governed by a three parameter family of Hamiltonians covering most cases related to real interacting two-qubit systems. We discuss types of evolutio
Externí odkaz:
http://arxiv.org/abs/1809.00731
We quantify the geometric measure of entanglement in terms of mean values of observables of entangled system. For pure states we find the relation of geometric measure of entanglement with the mean value of spin one-half for the system composed of sp
Externí odkaz:
http://arxiv.org/abs/1610.01432
Autor:
Frydryszak, Andrzej M.
We juxtapose two approaches to the representations of the super-Heisenberg group. Physical one, sometimes called concrete approach, based on the super-wave functions depending on the anti-commuting variables, yielding the harmonic superanalysis and r
Externí odkaz:
http://arxiv.org/abs/1409.8410
We derive an explicit expression for geometric measure of entanglement for spin and other quantum system. A relation of entanglement in pure state with the mean value of spin is given, thus, at the experimental level the local measurement of spin may
Externí odkaz:
http://arxiv.org/abs/1211.6472
Autor:
Frydryszak, Andrzej M.
We analyze recently proposed formalisms which use nilpotent variables to describe and/or generalize qubits and notion of entanglement. There are two types of them distinguished by the commutativity and or anti-commutativity of basics variables. While
Externí odkaz:
http://arxiv.org/abs/1210.0922
Autor:
Frydryszak, Andrzej M.
Entanglement of four qubit pure states defined by the $\eta$-trigonometric functions is studied. We analyze the behavior of two recently proposed symmetric entanglement monotones on the chosen $n=4$ qubit states .
Comment: 7 pages, no figures
Comment: 7 pages, no figures
Externí odkaz:
http://arxiv.org/abs/0902.3553
Autor:
Frydryszak, Andrzej M.
We address the question of description of qubit system in a formalism based on the nilpotent commuting variables. In this formalism qubits exhibit properties of composite objects being subject of the Pauli exclusion principle, but otherwise behaving
Externí odkaz:
http://arxiv.org/abs/0810.3016
Autor:
Frydryszak, A. M., Tkachuk, V. M.
We study quantum brachistochrone problem for the spin-1 system in a magnetic field of a constant absolute value. Such system gives us a possibility to examine in detail the statement of papers [A. Carlini {\it et al.}, Phys. Rev. Lett. {\bf 96}, 0605
Externí odkaz:
http://arxiv.org/abs/0709.0931
Autor:
Frydryszak, A. M.
Publikováno v:
Rept.Math.Phys.61:229-237,2008
We present a construction of the formalism where fundamental variables are nilpotent, but in contrast to the supermathematics, commutative. This gives another possibility to realize classically the Pauli exclusion principle. We sketch the relevant fo
Externí odkaz:
http://arxiv.org/abs/0708.1557
Autor:
Frydryszak, Andrzej M
Publikováno v:
Int.J.Mod.Phys.A22:2513-2534,2007
The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates $\eta$. Necessary geometrical notions and elements of generalized differential $\eta$-calculus are
Externí odkaz:
http://arxiv.org/abs/hep-th/0609072