Zobrazeno 1 - 10
of 192
pro vyhledávání: '"Fritz Colonius"'
Autor:
Fritz Colonius, Alexandre J. Santana
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 26, Iss 1-2, Pp 141-151 (2008)
This paper discusses stability properties of affine autonomous ordinary differential equations and generalizes a classical result on topological conjugacy for hyperbolic linear autonomous equations to the affine case.
Externí odkaz:
https://doaj.org/article/0f04c24cc54a47dea9aacb8bc97c065e
Publikováno v:
Journal of Differential Equations. 268:7877-7896
This paper provides an upper for the invariance pressure of control sets with nonempty interior and a lower bound for sets with finite volume. In the special case of the control set of a hyperbolic linear control system in R^{d} this yields an explic
For affine control systems with bounded control range the control sets, i.e., the maximal subsets of complete approximate controllability, are studied using spectral properties. For hyperbolic systems there is a unique control set with nonvoid interi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ebfa295d36146e0edafa4449344d05ae
Publikováno v:
Oberwolfach Reports. 15:531-558
We introduce discrete-time linear control systems on connected Lie groups and present an upper bound for the outer invariance entropy of admissible pairs (K,Q). If the stable subgroup of the uncontrolled system is closed and K has positive measure fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e25629e486fc22b14f933e096836885
https://opus.bibliothek.uni-augsburg.de/opus4/files/87849/cocv200188.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/files/87849/cocv200188.pdf
For homogeneous bilinear control systems, the control sets are characterized using a Lie algebra rank condition for the induced systems on projective space. This is based on a classical Diophantine approximation result. For affine control systems, th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30b125a2598f7c73c6db7cc809657dab
Autor:
Wolfgang Kliemann, Fritz Colonius
For nonlinear control systems with bounded control range the existence of control sets which are invariant relative to subsets of the state space is characterized. They allow to describe the common regions of attraction of invariant control sets.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ec181b306e1c09d7fb02de7b3a64136
https://opus.bibliothek.uni-augsburg.de/opus4/files/79880/79880.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/files/79880/79880.pdf
Autor:
Wolfgang Kliemann, Fritz Colonius
The dynamics of many mechanical systems can be described, or approximated by smooth vector fields in d-dimensional space Rd. External and internal excitations as well as modeling uncertainties are incorporated in the vector fields as families of (tim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f599518ec962655c8419ed3727824981
https://opus.bibliothek.uni-augsburg.de/opus4/files/79881/79881.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/files/79881/79881.pdf
Autor:
Boumediene Hamzi, Fritz Colonius
Publikováno v:
SIAM Journal on Control and Optimization
For deterministic continuous time nonlinear control systems, epsilon-practical stabilization entropy and practical stabilization entropy are introduced. Here the rate of attraction is specified by a KL-function. Upper and lower bounds for the diverse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e4873d6f0fb94ba6a12874557bd5928
http://arxiv.org/abs/2009.08187
http://arxiv.org/abs/2009.08187
Autor:
Fritz Colonius
A fundamental problem in optimal periodic control is to decide whether proper periodic controls and trajectories yield better average performance than constant steady-state solutions. The present paper describes a situation where this holds true, bec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e93f0eeb14037ff88a3f26e5ed51e51
https://opus.bibliothek.uni-augsburg.de/opus4/files/71343/71343.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/files/71343/71343.pdf