Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Fritz Albregtsen"'
Autor:
Varatharajan Nainamalai, Pravda Jith Ray Prasad, Egidijus Pelanis, Bjørn Edwin, Fritz Albregtsen, Ole Jakob Elle, Rahul P. Kumar
Publikováno v:
European Journal of Radiology Open, Vol 9, Iss , Pp 100448- (2022)
Purpose: Automated algorithms for liver parenchyma segmentation can be used to create patient-specific models (PSM) that assist clinicians in surgery planning. In this work, we analyze the clinical applicability of automated deep learning methods tog
Externí odkaz:
https://doaj.org/article/150f4ad6db00406aa0ce54ec54e7ba02
Autor:
Sigve Holmen, Hashini Nilushika Galappaththi-Arachchige, Elisabeth Kleppa, Pavitra Pillay, Thajasvarie Naicker, Myra Taylor, Mathias Onsrud, Eyrun Floerecke Kjetland, Fritz Albregtsen
Publikováno v:
PLoS Neglected Tropical Diseases, Vol 10, Iss 4, p e0004628 (2016)
BACKGROUND:The mucosal changes associated with female genital schistosomiasis (FGS) encompass abnormal blood vessels. These have been described as circular, reticular, branched, convoluted and having uneven calibre. However, these characteristics are
Externí odkaz:
https://doaj.org/article/421a2c61ee6646cc915e2563520e5b15
Autor:
Birgitte Nielsen, Fritz Albregtsen, Wanja Kildal, Vera M. Abeler, Gunnar B. Kristensen, Håvard E. Danielsen
Publikováno v:
Analytical Cellular Pathology, Vol 35, Iss 4, Pp 305-314 (2012)
Background: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human cancer. T
Externí odkaz:
https://doaj.org/article/0fe1fec05c76404c8b45096c6224e390
Publikováno v:
Analytical Cellular Pathology, Vol 23, Iss 2, Pp 75-88 (2001)
In order to study the prognostic value of quantifying the chromatin structure of cell nuclei from patients with early ovarian cancer, low dimensionality adaptive fractal and Gray Level Cooccurrence Matrix texture feature vectors were extracted from n
Externí odkaz:
https://doaj.org/article/98674c93bf4f4fccb57015a8686ec3a8
Publikováno v:
Analytical Cellular Pathology, Vol 19, Iss 1, Pp 21-37 (1999)
A polygonization‐based method is used to estimate the fractal dimension and several new scalar lacunarity features from digitized transmission electron micrographs (TEM) of mouse liver cell nuclei. The fractal features have been estimated in differ
Externí odkaz:
https://doaj.org/article/83259d503444480ebcb4e28cdae45f73
Autor:
Helene Schulerud, Gunner B. Kristensen, Knut Liestøl, Liljana Vlatkovic, Albrecht Reith, Fritz Albregtsen, Hàvard E. Danielsen
Publikováno v:
Analytical Cellular Pathology, Vol 16, Iss 2, Pp 63-82 (1998)
A large body of the published literature in nuclear image analysis do not evaluate their findings on an independent data set. Hence, if several features are evaluated on a limited data set over‐optimistic results are easily achieved. In order to fi
Externí odkaz:
https://doaj.org/article/879cf54011e24c6694369ad7d8c7276d
Autor:
Fritz Albregtsen
Publikováno v:
Cellular Oncology, Vol 31, Iss 6, Pp 501-501 (2009)
Externí odkaz:
https://doaj.org/article/47586763f91f4339b39e3d22b869a998
Autor:
Håvard E. Danielsen, Jone Trovik, Helga B. Salvesen, Knut Liestøl, Fritz Albregtsen, Line Bjørge, Henrica M.J. Werner, Frederic Amant, Margaret S. Lode, Jostein Tjugum, Jan A. Rokne, Klaus Oddenes, Runar Eraker, Hans K. Haugland, Anne C. Staff, Solveig Tingulstad, Janusz Marcickiewicz, Manohar Pradhan, Wanja Kildal, Marna L. Kjæreng, John Arne Nesheim, Rolf Anders Syvertsen, Birgitte Nielsen, Tormund S. Njølstad, Tarjei S. Hveem
Supplementary information describing the Nucleotyping method in more detail, including the training and validation results for the calculated Nucleotyping features.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d7506a7f8319d75d9bff66f55f44cd4
https://doi.org/10.1158/1055-9965.22436458.v1
https://doi.org/10.1158/1055-9965.22436458.v1
Autor:
Håvard E. Danielsen, Jone Trovik, Helga B. Salvesen, Knut Liestøl, Fritz Albregtsen, Line Bjørge, Henrica M.J. Werner, Frederic Amant, Margaret S. Lode, Jostein Tjugum, Jan A. Rokne, Klaus Oddenes, Runar Eraker, Hans K. Haugland, Anne C. Staff, Solveig Tingulstad, Janusz Marcickiewicz, Manohar Pradhan, Wanja Kildal, Marna L. Kjæreng, John Arne Nesheim, Rolf Anders Syvertsen, Birgitte Nielsen, Tormund S. Njølstad, Tarjei S. Hveem
Background: Most endometrial carcinoma patients are diagnosed at an early stage with a good prognosis. However, a relatively low fraction with lethal disease constitutes a substantial number of patients due to the high incidence rate. Preoperative id
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39782c2a93a99729dc730112dbb5c0d2
https://doi.org/10.1158/1055-9965.c.6515410
https://doi.org/10.1158/1055-9965.c.6515410
Autor:
Rahul Prasanna Kumar, Pravda Jith Ray Prasad, Ole Jakob Elle, Frank Lindseth, Fritz Albregtsen
Publikováno v:
Medical Imaging 2021: Computer-Aided Diagnosis.
Automation in the field of medical image segmentation is critical in helping the oncologists and surgeons for the accurate analysis of several pathological conditions by saving time. The ability to automatically segment the liver fast and accurately