Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Friendly labeling"'
Autor:
Wen-Chiao Hsu, I-En Liao
Publikováno v:
IEEE Access, Vol 8, Pp 176375-176392 (2020)
One of the difficulties faced when using XML as the data storage structure is query inefficiency. Therefore, various indexing methods have been proposed. When designing indexing methods, the first step is to choose the labeling method. Some labeling
Externí odkaz:
https://doaj.org/article/5080a01f756b4416b7c6d28eebe0b71b
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 7, Iss 1, Pp 1-10 (2019)
Let G = (V, E) be a graph. A vertex labeling f : V → Z2 induces an edge labeling f * : E → Z2 defined by f * (xy) = f(x) + f(y), for each edge xy ∈ E. For i ∈ Z2, let vf(i) = ∣{v ∈ V : f(v) = i}∣ and ef(i) = ∣{e ∈ E : f * (e) = i}
Externí odkaz:
https://doaj.org/article/0753e69340404efb9654ba119f4689ba
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wai Chee Shiu
Publikováno v:
Transactions on Combinatorics, Vol 6, Iss 2, Pp 7-17 (2017)
Let $G=(V,E)$ be a simple graph. An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where $Z_2={0,1}$ is the additive group of order 2
Externí odkaz:
https://doaj.org/article/66cf74882e7d4eb7854102e196062367
Autor:
Wai Chee Shiu
Publikováno v:
Transactions on Combinatorics, Vol 5, Iss 3, Pp 11-21 (2016)
Let G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(
Externí odkaz:
https://doaj.org/article/4767f664b40e499bb61d2c3dca4fd460
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 13, Iss 2, Pp 107-111 (2016)
Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}
Externí odkaz:
https://doaj.org/article/e242f23294104abfa6d9ca79fb5beaae
Autor:
Wai Chee Shiu, Man-Ho Ho
Publikováno v:
Transactions on Combinatorics, Vol 2, Iss 4, Pp 63-80 (2013)
Let $G=(V,E)$ be a connected simple graph. A labeling $f:Vrightarrow Z_2$ induces an edgelabeling $f^*:EtoZ_2$ defined by $f^*(xy)=f(x)+f(y)$ for each $xy in E$. For $iinZ_2$,let $v_f(i)=|f^{-1}(i)|$ and $e_f(i)=|f^{*-1}(i)|$. A labeling $f$ is calle
Externí odkaz:
https://doaj.org/article/3e81e49b228746229aca7890a1bce39c
Autor:
Wai Chee Shiu, Kwong Harris
Publikováno v:
Transactions on Combinatorics, Vol 1, Iss 1, Pp 15-20 (2012)
Let $G=(V,E)$ be a connected simple graph. A labeling $f:V to Z_2$ induces two edge labelings $f^+, f^*: E to Z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in E$. For $i in Z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) =
Externí odkaz:
https://doaj.org/article/d32e070fc8b047dd88340240fa120513
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 7, Iss 1, Pp 1-10 (2019)
Let G = (V, E) be a graph. A vertex labeling f : V → Z2 induces an edge labeling f * : E → Z2 defined by f * (xy) = f(x) + f(y), for each edge xy ∈ E. For i ∈ Z2, let vf(i) = ∣{v ∈ V : f(v) = i}∣ and ef(i) = ∣{e ∈ E : f * (e) = i}