Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Friedrich Wagemann"'
Autor:
Bakhrom, Omirov, Friedrich, Wagemann
Publikováno v:
In Journal of Algebra 15 August 2020 556:696-724
Autor:
Friedrich Wagemann, Jörg Feldvoss
Publikováno v:
Journal of Algebra. 569:276-317
In this paper we prove the Leibniz analogue of Whitehead's vanishing theorem for the Chevalley-Eilenberg cohomology of Lie algebras. As a consequence, we obtain the second Whitehead lemma for Leibniz algebras. Moreover, we compute the cohomology of s
Autor:
Friedrich Wagemann, Ulrich Krähmer
Publikováno v:
Forum Mathematicum. 31:1305-1315
We construct a bialgebra object in the category of linear maps ℒ ℳ {\mathcal{LM}} from a cocommutative rack bialgebra. The construction does extend to some non-cocommutative rack bialgberas, as is illustrated by a concrete example. As a separ
Autor:
Friedrich Wagemann, Jean Mugniery
In this article, we generalize Loday and Pirashvili's [10] computation of the Ext-category of Leibniz bimodules for a simple Lie algebra to the case of a simple (non Lie) Leibniz algebra. Most of the arguments generalize easily, while the main new in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7aa0a039003bdfbb6fc976bd0f30ef6
https://hal.archives-ouvertes.fr/hal-02861691
https://hal.archives-ouvertes.fr/hal-02861691
Autor:
Friedrich Wagemann
This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In
Autor:
Dietrich Burde, Friedrich Wagemann
We study sympathetic Lie algebras, namely perfect and complete Lie algebras. They arise among other things in the study of adjoint Lie algebra cohomology. This is motivated by a conjecture of Pirashvili, which says that a non-trivial finite-dimension
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e77cdc746cfc3ccec24fe1614cbdc0cf
http://arxiv.org/abs/1908.05963
http://arxiv.org/abs/1908.05963
Autor:
Friedrich Wagemann
Publikováno v:
Communications in Mathematics, Vol 28, Iss 2, Pp 123-137 (2020)
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e593770506bb2d1aff315c77efa02a1d
Publikováno v:
Annals of Global Analysis and Geometry
Annals of Global Analysis and Geometry, Springer Verlag, 2020, 57 (2), pp.225-256. ⟨10.1007/s10455-019-09697-2⟩
Annals of Global Analysis and Geometry, Springer Verlag, 2020, 57 (2), pp.225-256. ⟨10.1007/s10455-019-09697-2⟩
We construct an infinite-dimensional Lie rackoid Y which hosts an integration of the standard Courant algebroid. As a set, $$Y={{\mathcal {C}}}^{\infty }([0,1],T^*M)$$ for a compact manifold M. The rackoid product is by automorphisms of the Dorfman b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c1fa88ed88a9083cdeecfd41347a607
http://arxiv.org/abs/1807.05891
http://arxiv.org/abs/1807.05891
Publikováno v:
Journal of Generalized Lie Theory and Applications
Journal of Generalized Lie Theory and Applications, Natalia Iyudu (Edinburgh), Abdenacer Makhlouf (Université Haute Alsace, France), Noriaki Kamiya (University of Aizu, Japan), 2016, 10 (1)
J. Gen. Lie Theory Appl.
Journal of Generalized Lie Theory and Applications, Natalia Iyudu (Edinburgh), Abdenacer Makhlouf (Université Haute Alsace, France), Noriaki Kamiya (University of Aizu, Japan), 2016, 10 (1)
J. Gen. Lie Theory Appl.
In this paper we focus on a certain self-distributive multiplication on coalgebras, which leads to so-called rack bialgebra. Inspired by semi-group theory (adapting the Suschkewitsch theorem), we do some structure theory for rack bialgebras and cocom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9e3ee100da329ad6fe53826cf60f340
https://hal.archives-ouvertes.fr/hal-01891841/document
https://hal.archives-ouvertes.fr/hal-01891841/document