Zobrazeno 1 - 10
of 306
pro vyhledávání: '"Freund, Jonathan"'
Trained neural networks (NN) are attractive as surrogate models to replace costly calculations in physical simulations, but are often unknowingly applied to states not adequately represented in the training dataset. We present the novel technique of
Externí odkaz:
http://arxiv.org/abs/2412.03497
Publikováno v:
J. Comput. Phys. 523 (2025) 113638
Trained neural networks (NN) have attractive features for closing governing equations. There are many methods that are showing promise, but all can fail in cases when small errors consequentially violate physical reality, such as a solution boundedne
Externí odkaz:
http://arxiv.org/abs/2408.03413
Autor:
Freund, Jonathan B.
Numerical simulations in two space dimensions are used to examine the dynamics, transport, and equilibrium behaviors of a neutrally buoyant circular object immersed in an active suspension within a larger closed circular container. The continuum mode
Externí odkaz:
http://arxiv.org/abs/2211.14583
Publikováno v:
In Journal of Computational Physics 15 February 2025 523
Autor:
Alberti, Andrea, Munafó, Alessandro, Nishihara, Munetake, Pantano, Carlos, Freund, Jonathan B., Panesi, Marco
A non-equilibrium model for laser-induced plasmas is used to describe how nano-second temporal mode-beating affects plasma kernel formation and growth in quiescent air. The chemically reactive Navier-Stokes equations describe the hydrodynamics, and n
Externí odkaz:
http://arxiv.org/abs/2106.09168
Publikováno v:
Physical Review Fluids 6 (2021) 050502
The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses in a temporally developing plane turbulent jet at Reynolds number $Re_0=6\,000$. The objective fu
Externí odkaz:
http://arxiv.org/abs/2105.01030
Machine learning for scientific applications faces the challenge of limited data. We propose a framework that leverages a priori known physics to reduce overfitting when training on relatively small datasets. A deep neural network is embedded in a pa
Externí odkaz:
http://arxiv.org/abs/1911.09145
Autor:
Movahed, Pooya, Freund, Jonathan B.
High-intensity ultrasound excites pre-existing bubbles in tissue-like material, and the subsequent bubble activity may lead to damage. To investigate such damage mechanisms, agar tissue-mimicking phantoms were subjected to multiple pressure wave burs
Externí odkaz:
http://arxiv.org/abs/1811.03915
Autor:
Chung, Seung Whan, Freund, Jonathan B.
Publikováno v:
In Journal of Computational Physics 15 May 2022 457
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.