Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Freund, Fabian"'
Autor:
Freund, Fabian
Trees corresponding to $\Lambda$- and $\Xi$-$n$-coalescents can be both quite similar and fundamentally different compared to bifurcating tree models based on Kingman's $n$-coalescent. This has consequences for inference of a well-fitting gene geneal
Externí odkaz:
http://arxiv.org/abs/2010.12271
Autor:
Freund, Fabian, Siri-Jégousse, Arno
For $\Lambda$-$n$-coalescents with mutation, we analyse the size $O_n$ of the partition block of $i\in\{1,\ldots,n\}$ at the time where the first mutation appears on the tree that affects $i$ and is shared with any other $j\in\{1,\ldots,n\}$. We prov
Externí odkaz:
http://arxiv.org/abs/1906.11709
Autor:
Freund, Fabian
Publikováno v:
Published in Journal of Mathematical Biology 80, 1497--1521(2020)
Multiple-merger coalescents, e.g. $\Lambda$-$n$-coalescents, have been proposed as models of the genealogy of $n$ sampled individuals for a range of populations whose genealogical structures are not captured well by Kingman's $n$-coalescent. $\Lambda
Externí odkaz:
http://arxiv.org/abs/1902.02155
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Freund, Fabian, Möhle, Martin
Publikováno v:
Modern Stochastics: Theory and Applications 2017, Vol. 4, No. 4, 407-425
We study the frequency process $f_1$ of the block of 1 for a $\varXi$-coalescent $\varPi$ with dust. If $\varPi$ stays infinite, $f_1$ is a jump-hold process which can be expressed as a sum of broken parts from a stick-breaking procedure with uncorre
Externí odkaz:
http://arxiv.org/abs/1703.06090
Autor:
Freund, Fabian, Siri-Jégousse, Arno
Publikováno v:
In Computational Statistics and Data Analysis April 2021 156
Autor:
Freund, Fabian1,2 (AUTHOR), Kerdoncuff, Elise3,4 (AUTHOR), Matuszewski, Sebastian5 (AUTHOR), Lapierre, Marguerite4 (AUTHOR), Hildebrandt, Marcel6 (AUTHOR), Jensen, Jeffrey D.7 (AUTHOR), Ferretti, Luca8 (AUTHOR), Lambert, Amaury4,9 (AUTHOR), Sackton, Timothy B.10 (AUTHOR), Achaz, Guillaume4,11 (AUTHOR) guillaume.achaz@mnhn.fr
Publikováno v:
PLoS Genetics. 3/23/2023, Vol. 18 Issue 3, p1-18. 18p.
Autor:
Davison, Charlotte, Tallman, Sam, de Ste-Croix, Megan, Antonio, Martin, Oggioni, Marco R., Kwambana-Adams, Brenda, Freund, Fabian, Beleza, Sandra
Publikováno v:
PLoS Genetics; 6/6/2024, Vol. 20 Issue 6, p1-26, 26p
Autor:
Freund, Fabian, Siri-Jégousse, Arno
This article shows the asymptotics of distribution and moments of the size $X_n$ of the minimal clade of a randomly chosen individual in a Bolthausen-Sznitman $n$-coalescent for $n\to\infty$. The Bolthausen-Sznitman $n$-coalescent is a Markov process
Externí odkaz:
http://arxiv.org/abs/1301.2908
In this paper, we consider Beta$(2-{\alpha},{\alpha})$ (with $1<{\alpha}<2$) and related ${\Lambda}$-coalescents. If $T^{(n)}$ denotes the length of an external branch of the $n$-coalescent, we prove the convergence of $n^{{\alpha}-1}T^{(n)}$ when $n
Externí odkaz:
http://arxiv.org/abs/1201.3983