Zobrazeno 1 - 10
of 826
pro vyhledávání: '"Freudiger A"'
Autor:
Lyu, Yiwei, Cha, Sung Jik, Jiang, Cheng, Chowdury, Asadur, Hou, Xinhai, Harake, Edward, Kondepudi, Akhil, Freudiger, Christian, Lee, Honglak, Hollon, Todd C.
High-quality, high-resolution medical imaging is essential for clinical care. Raman-based biomedical optical imaging uses non-ionizing infrared radiation to evaluate human tissues in real time and is used for early cancer detection, brain tumor diagn
Externí odkaz:
http://arxiv.org/abs/2403.13680
Autor:
Hollon, Todd C., Jiang, Cheng, Chowdury, Asadur, Nasir-Moin, Mustafa, Kondepudi, Akhil, Aabedi, Alexander, Adapa, Arjun, Al-Holou, Wajd, Heth, Jason, Sagher, Oren, Lowenstein, Pedro, Castro, Maria, Wadiura, Lisa Irina, Widhalm, Georg, Neuschmelting, Volker, Reinecke, David, von Spreckelsen, Niklas, Berger, Mitchel S., Hervey-Jumper, Shawn L., Golfinos, John G., Snuderl, Matija, Camelo-Piragua, Sandra, Freudiger, Christian, Lee, Honglak, Orringer, Daniel A.
Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgica
Externí odkaz:
http://arxiv.org/abs/2303.13610
Autor:
Jiang, Cheng, Hou, Xinhai, Kondepudi, Akhil, Chowdury, Asadur, Freudiger, Christian W., Orringer, Daniel A., Lee, Honglak, Hollon, Todd C.
Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods deve
Externí odkaz:
http://arxiv.org/abs/2303.01605
Autor:
Jiang, Cheng, Chowdury, Asadur, Hou, Xinhai, Kondepudi, Akhil, Freudiger, Christian W., Conway, Kyle, Camelo-Piragua, Sandra, Orringer, Daniel A., Lee, Honglak, Hollon, Todd C.
Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. T
Externí odkaz:
http://arxiv.org/abs/2206.08439
Autor:
Jiang, Cheng, Bhattacharya, Abhishek, Linzey, Joseph, Joshi, Rushikesh S., Cha, Sung Jik, Srinivasan, Sudharsan, Alber, Daniel, Kondepudi, Akhil, Urias, Esteban, Pandian, Balaji, Al-Holou, Wajd, Sullivan, Steve, Thompson, B. Gregory, Heth, Jason, Freudiger, Chris, Khalsa, Siri, Pacione, Donato, Golfinos, John G., Camelo-Piragua, Sandra, Orringer, Daniel A., Lee, Honglak, Hollon, Todd
Publikováno v:
Neurosurgery 90 (6), 758-767, 2022
Background: Accurate diagnosis of skull base tumors is essential for providing personalized surgical treatment strategies. Intraoperative diagnosis can be challenging due to tumor diversity and lack of intraoperative pathology resources. Objective: T
Externí odkaz:
http://arxiv.org/abs/2108.03555
Autor:
Paulik, Matthias, Seigel, Matt, Mason, Henry, Telaar, Dominic, Kluivers, Joris, van Dalen, Rogier, Lau, Chi Wai, Carlson, Luke, Granqvist, Filip, Vandevelde, Chris, Agarwal, Sudeep, Freudiger, Julien, Byde, Andrew, Bhowmick, Abhishek, Kapoor, Gaurav, Beaumont, Si, Cahill, Áine, Hughes, Dominic, Javidbakht, Omid, Dong, Fei, Rishi, Rehan, Hung, Stanley
We describe the design of our federated task processing system. Originally, the system was created to support two specific federated tasks: evaluation and tuning of on-device ML systems, primarily for the purpose of personalizing these systems. In re
Externí odkaz:
http://arxiv.org/abs/2102.08503
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In large-scale statistical learning, data collection and model fitting are moving increasingly toward peripheral devices---phones, watches, fitness trackers---away from centralized data collection. Concomitant with this rise in decentralized data are
Externí odkaz:
http://arxiv.org/abs/1812.00984