Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Freno, Antonino"'
Generative models for graphs have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are either only suitable for characterizing some partic
Externí odkaz:
http://arxiv.org/abs/1210.4860
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Statistical models for networks have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are explicitly designed for capturing some specific
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::4b3de51968b0930bdec39a3e2378e3b1
https://inria.hal.science/hal-00922432
https://inria.hal.science/hal-00922432
Publikováno v:
Neural Information Processing Systems (NIPS)
Neural Information Processing Systems (NIPS), Dec 2012, Lake Tahoe, United States
Neural Information Processing Systems (NIPS), Dec 2012, Lake Tahoe, United States
International audience; Statistical models for networks have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are explicitly designed for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::0fee7b8ad13b0f3731186f36af5cfbe4
https://inria.hal.science/hal-00750345/document
https://inria.hal.science/hal-00750345/document
Publikováno v:
Neural Information Processing Systems Workshop on Choice Models and Preference Learning
Neural Information Processing Systems Workshop on Choice Models and Preference Learning, Dec 2011, Granada, Spain
Neural Information Processing Systems Workshop on Choice Models and Preference Learning, Dec 2011, Granada, Spain
International audience; The link prediction problem for graphs is a binary classification task that estimates the presence or absence of a link between two nodes in the graph. Links absent from the training set, however, cannot be directly considered
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9b9ed097ca5d8c8a7f2ef2f70ec6119d
https://hal.inria.fr/hal-00641419
https://hal.inria.fr/hal-00641419
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Proceedings of the 15th ACM SIGKDD International Conference: Knowledge Discovery & Data Mining; 6/28/2009, p319-328, 10p
Autor:
Trentin, Edmondo, Freno, Antonino
Publikováno v:
Innovations in Neural Information Paradigms & Applications; 2009, p155-182, 28p