Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Fredholm–Volterra integral Equations"'
Publikováno v:
Ain Shams Engineering Journal, Vol 15, Iss 6, Pp 102755- (2024)
In this paper, we propose an accelerated numerical technique for solving mixed Fredholm-Volterra integral equations (MFVIEs). The MFVIE is solved using the two-grid iterative technique, which uses a small system of equations to reach higher accuracy.
Externí odkaz:
https://doaj.org/article/870f5d98ed9d4cbd9ff8fd43f7a835ac
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Asim Patra
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 5, Iss , Pp 100284- (2022)
In this work, a reliable and efficient numerical technique viz. the balancing collocation technique (BCT) has been introduced and employed to solve the linear two-dimensional Fredholm–Volterra integral (F–VI) equations. The technique reduces the
Externí odkaz:
https://doaj.org/article/feb0374a54a34be582fa16ab369961e5
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 28, Iss 1, Pp 1-14 (2020)
Abstract In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve int
Externí odkaz:
https://doaj.org/article/47d5d7f9f6404de6ac7a7b1268b8ed04
Publikováno v:
Symmetry, Vol 13, Iss 12, p 2354 (2021)
The approximate solutions of Fredholm–Volterra integro-differential equations of multi-fractional order within the Caputo sense (F-VIFDEs) under mixed conditions are presented in this article apply a collocation points technique based completely on
Externí odkaz:
https://doaj.org/article/926d1a220df8401c951b8102774a1790
Autor:
Sanda Micula
Publikováno v:
Symmetry, Vol 13, Iss 8, p 1326 (2021)
The paper presents an iterative numerical method for approximating solutions of two-dimensional Fredholm–Volterra integral equations of the second kind. As these equations arise in many applications, there is a constant need for accurate, but fast
Externí odkaz:
https://doaj.org/article/73ad830ed49e4999913e415d4e09b3b6
Publikováno v:
Beni-Suef University Journal of Basic and Applied Sciences, Vol 3, Iss 2, Pp 157-163 (2014)
In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE). The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existe
Externí odkaz:
https://doaj.org/article/3dfacdd7caca4de78266e92372982493
Autor:
András Szilárd
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 5, Iss 1, Pp 5-19 (2013)
In this paper we study the continuous dependence and the differentiability with respect to the parameter λ ∈ [λ1, λ2] of the solution operator S : [λ1, λ2] → L2[a, b] for a mixed Fredholm-Volterra type integral equation. The main tool is the
Externí odkaz:
https://doaj.org/article/533a5c4bb7e94bf49be15fdc4c7c0519
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 28, Iss 1, Pp 1-14 (2020)
In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equ
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.