Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Frederik Ø Kjeldal"'
Autor:
Frederik Ø Kjeldal, Janus J Eriksen
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 4, p 045059 (2024)
Machine-learning models in chemistry—when based on descriptors of atoms embedded within molecules—face essential challenges in transferring the quality of predictions of local electronic structures and their associated properties across chemical
Externí odkaz:
https://doaj.org/article/fe88dd4ce639402a835b4b38cdbe6836
Autor:
Frederik Ø. Kjeldal, Janus J. Eriksen
Publikováno v:
Journal of Chemical Theory and Computation. 19:2029-2038
We apply a number of atomic decomposition schemes across the standard QM7 dataset -- a small model set of organic molecules at equilibrium geometry -- to inspect the possible emergence of trends among contributions to atomization energies from distin
Autor:
Javier Sanz Rodrigo, Andreas Erbs Hillers-Bendtsen, Frederik Ø. Kjeldal, Nicolai M. Høyer, Kurt V. Mikkelsen, Stephan P. A. Sauer
Publikováno v:
Sanz Rodrigo, J, Hillers-Bendtsen, A E, Kjeldal, F Ø, Høyer, N M, Mikkelsen, K V & Sauer, S P A 2023, ' Indirect nuclear spin-spin couplings with third order contributions added to the SOPPA method ', The Journal of Chemical Physics, vol. 158, no. 12, 124118 . https://doi.org/10.1063/5.0140117
In this article, a modification of the second-order polarization propagator approximation (SOPPA) method is introduced and illustrated for the calculation of the indirect nuclear spin–spin couplings. The standard SOPPA method, although cheaper in t