Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Fratila, Dragos"'
Autor:
Ancona, Giuseppe, Fratila, Dragos
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 8 (July 16, 2024) epiga:12345
We prove that any commutative group scheme over an arbitrary base scheme of finite type over a field with connected fibers and admitting a relatively ample line bundle is polarizable in the sense of Ng\^o. This extends the applicability of Ng\^o's su
Externí odkaz:
http://arxiv.org/abs/2304.07729
Autor:
Ancona, Giuseppe, Fratila, Dragos
Motivated by the study of algebraic classes in mixed characteristic we define a countable subalgebra of $\bar{\mathbb{Q}}_p$ which we call the algebra of Andr\'e's $p$-adic periods. We construct a tannakian framework to study these periods. In partic
Externí odkaz:
http://arxiv.org/abs/2207.09213
Autor:
Fratila, Dragos, Prasad, Dipendra
In this largely expository paper we extend properties of the homological duality functor $RHom_{\mathcal H}(-,{\mathcal H})$ where ${\mathcal H}$ is the Hecke algebra of a reductive $p$-adic group, to the case where it is the Hecke algebra of a finit
Externí odkaz:
http://arxiv.org/abs/2106.00437
We study the moduli stack of degree $0$ semistable $G$-bundles on an irreducible curve $E$ of arithmetic genus $1$, where $G$ is a connected reductive group. Our main result describes a partition of this stack indexed by a certain family of connected
Externí odkaz:
http://arxiv.org/abs/2007.03229
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Frăţilă, Dragoş
We show that the moduli space of semistable G-bundles on an elliptic curve for a reductive group G is isomorphic to a power of the elliptic curve modulo a certain Weyl group which depend on the topological type of the bundle. This generalises a resul
Externí odkaz:
http://arxiv.org/abs/1703.09959
Autor:
Fratila, Dragos
In a recent paper Ben-Zvi and Nadler proved that the induction map from $B$-bundles of degree 0 to semistable $G$-bundles of degree 0 over an elliptic curve is a small map with Galois group isomorphic to the Weyl group of $G$. We generalize their res
Externí odkaz:
http://arxiv.org/abs/1406.6593
Autor:
Fratila, Dragos
In \cite{S} O. Schiffmann gave a presentation of the Drinfel'd double of the elliptic Hall algebra which is similar in spirit to Drinfel'd's new realization of quantum affine algebras. Using this result together with a part of his proof we can provid
Externí odkaz:
http://arxiv.org/abs/1109.5991
Autor:
Fratila, Dragos
Publikováno v:
Compositio Math. 149 (2013) 914-958
We give an explicit construction of the cusp eigenforms on an elliptic curve defined over a finite field using the theory of Hall algebras and the Langlands correspondence for function fields and $\GL_n$. As a consequence we obtain a description of t
Externí odkaz:
http://arxiv.org/abs/1109.4308
Autor:
Agore, Ana-Loredana, Fratila, Dragos
Publikováno v:
Czechoslovak Math. J. 60 (2010), 889-901
All crossed products of two cyclic groups are explicitly described using generators and relations. A necessary and sufficient condition for an extension of a group by a group to be a cyclic group is given.
Comment: To appear in Czechoslovak Math
Comment: To appear in Czechoslovak Math
Externí odkaz:
http://arxiv.org/abs/0809.0433