Zobrazeno 1 - 10
of 735
pro vyhledávání: '"Franzoi P"'
We establish the existence of quasi-periodic traveling wave solutions for the $\beta$-plane equation on $\mathbb{T}^2$ with a large quasi-periodic traveling wave external force. These solutions exhibit large sizes, which depend on the frequency of os
Externí odkaz:
http://arxiv.org/abs/2406.07099
Autor:
Franzoi, Luca, Montalto, Riccardo
We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $\T^d$, with $d=3$ and $d\in\N$ even.
Externí odkaz:
http://arxiv.org/abs/2312.10514
Autor:
Filippo Cendron, Umberto Rosani, Marco Franzoi, Carlo Boselli, Flavio Maggi, Massimo De Marchi, Mauro Penasa
Publikováno v:
BMC Genomics, Vol 25, Iss 1, Pp 1-15 (2024)
Abstract Background Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial fo
Externí odkaz:
https://doaj.org/article/62f5bde374104901850345f7d64c61fc
We prove the existence of steady \emph{space quasi-periodic} stream functions, solutions for the Euler equation in vorticity-stream function formulation in the two dimensional channel ${\mathbb R}\times [-1,1]$. These solutions bifurcate from a presc
Externí odkaz:
http://arxiv.org/abs/2303.03302
Autor:
Isabella Giulia Franzoi
Publikováno v:
Frontiers in Psychology, Vol 15 (2024)
Occupational and/or environmental exposure to asbestos can lead to clinical manifestation of a variety of diseases, including malignant mesothelioma (MM), a rare cancer with a particularly high incidence rate in areas with a long history of asbestos
Externí odkaz:
https://doaj.org/article/a53a83333d36420296ffcdb8be1495ea
Autor:
Franzoi, Luca
We prove a reducibility result for a linear wave equation with a time quasi-periodic driving on the one dimensional torus. The driving is assumed to be fast oscillating, but not necessarily of small size. Provided that the external frequency vector i
Externí odkaz:
http://arxiv.org/abs/2301.08009
Autor:
Luca Franzoi, Riccardo Montalto
Publikováno v:
Mathematics in Engineering, Vol 6, Iss 3, Pp 394-406 (2024)
We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $ \mathbb{T}^d $, with $ d = 3 $ and $ d\in\mathbb{N} $ even.
Externí odkaz:
https://doaj.org/article/c57d583301414e6589b82237271ad151
Autor:
Antonella Granieri, Isabella Giulia Franzoi, Maria Domenica Sauta, Alessandro Marinaccio, Carolina Mensi, Sabrina Rugarli, Enrica Migliore, Ilaria Cozzi, Domenica Cavone, Luigi Vimercati, Federica Grosso, Marinella Bertolotti, Giulia Raimondi, Marco Innamorati, Michela Bonafede
Publikováno v:
Frontiers in Psychology, Vol 15 (2024)
ObjectiveThe diagnosis of malignant mesothelioma (MM) can be devastating for both patients and caregivers, who may experience intense suffering from a physical, psychological, and interpersonal perspective. Despite the extensive literature on caregiv
Externí odkaz:
https://doaj.org/article/4f9e0ceefd434536aabcceedfdd19866
Autor:
Maria Alice Franzoi, Arnaud Pages, Loula Papageorgiou, Antonio Di Meglio, Ariane Laparra, Elise Martin, Aude Barbier, Nathalie Renvoise, Johanna Arvis, Florian Scotte, Ines Vaz-Luis
Publikováno v:
JMIR Research Protocols, Vol 13, p e52841 (2024)
BackgroundSupportive care (SC) refers to the prevention and management of complications of cancer and its treatment. While it has long been recognized as an important cancer care delivery component, a high proportion of patients face unaddressed SC n
Externí odkaz:
https://doaj.org/article/ace6f3eb3ae04b44b4b28b3c774e23e3
Autor:
Franzoi, Luca, Montalto, Riccardo
In this paper we investigate the inviscid limit $\nu \to 0$ for time-quasi-periodic solutions of the incompressible Navier-Stokes equations on the two-dimensional torus ${\mathbb T}^2$, with a small time-quasi-periodic external force. More precisely,
Externí odkaz:
http://arxiv.org/abs/2207.11008