Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Frank Vallentin"'
Publikováno v:
Discrete Analysis (2020)
On the integrality gap of the maximum-cut semidefinite programming relaxation in fixed dimension, Discrete Analysis 2020:10, 17 pp. MAXCUT, the problem of finding a partition of the vertices of a given graph into two sets that maximizes the number o
Externí odkaz:
https://doaj.org/article/d1cf84d802194fb0b78cd9ab9edaade0
Publikováno v:
Quantum, Vol 5, p 400 (2021)
The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer. Recently, this result has been generalized to cover inputs that are close to a coherent superposition of loga
Externí odkaz:
https://doaj.org/article/5dfa32d105a2445db7a3cbb34d23c865
Publikováno v:
Forum of Mathematics, Sigma, Vol 2 (2014)
We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packing
Externí odkaz:
https://doaj.org/article/1094576c03fd41a0b47d42dac68067e5
Publikováno v:
Oberwolfach Reports. 19:1039-1089
Publikováno v:
Mathematical Programming, 194(1-2)
We give a hierarchy of $k$-point bounds extending the Delsarte-Goethals-Seidel linear programming $2$-point bound and the Bachoc-Vallentin semidefinite programming $3$-point bound for spherical codes. An optimized implementation of this hierarchy all
Publikováno v:
American Mathematical Society. Proceedings. 150(8)
We recursively extend the Lov\'asz theta number to geometric hypergraphs on the unit sphere and on Euclidean space, obtaining an upper bound for the independence ratio of these hypergraphs. As an application we reprove a result in Euclidean Ramsey th
In this paper we provide an algorithm, similar to the simplex algorithm, which determines a rational cp-factorization of a given matrix, whenever the matrix allows such a factorization. This algorithm can be used to show that every integral completel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3bdb1e1761d0a61242cf6fa9124f5589
https://doi.org/10.1007/s10107-020-01467-4
https://doi.org/10.1007/s10107-020-01467-4
Publikováno v:
Journal of the London Mathematical Society
Journal of the London Mathematical Society, London Mathematical Society, 2021, 104 (3), pp.1135-1171. ⟨10.1112/jlms.12456⟩
Journal of the London Mathematical Society, London Mathematical Society, 2021, 104 (3), pp.1135-1171. ⟨10.1112/jlms.12456⟩
In this paper we define the chromatic number of a lattice: It is the least number of colors one needs to color the interiors of the cells of the Voronoi tessellation of a lattice so that no two cells sharing a facet are of the same color. We compute
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9d8dd187e12905d8b5adb91cbeb5562
https://hdl.handle.net/10037/24130
https://hdl.handle.net/10037/24130
Publikováno v:
Quantum, Vol 5, p 400 (2021)
The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer. Recently, this result has been generalized to cover inputs that are close to a coherent superposition of loga
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9022e278cd16442f0bd9c86af49ca5e
http://arxiv.org/abs/2007.04363
http://arxiv.org/abs/2007.04363
Publikováno v:
Mathematical Programming, 191(2)
We introduce the cone of completely-positive functions, a subset of the cone of positive-type functions, and use it to fully characterize maximum-density distance-avoiding sets as the optimal solutions of a convex optimization problem. As a consequen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a9496d119668438cdff532add08d1fce
http://resolver.tudelft.nl/uuid:145db990-90bc-4519-8f5c-15f31050f99f
http://resolver.tudelft.nl/uuid:145db990-90bc-4519-8f5c-15f31050f99f