Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Francois BALLAY"'
Autor:
Francois BALLAY
Publikováno v:
HAL
Given a nef and big line bundle $L$ on a projective variety $X$ of dimension $d \geq 2$, we prove that the Seshadri constant of $L$ at a very general point is larger than $(d+1)^{\frac{1}{d}-1}$. This slightly improves the lower bound $1/d$ establish
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76db9debb5f035e6824fea51bda183f8
https://hal.science/hal-03606565
https://hal.science/hal-03606565
Autor:
Francois BALLAY
Publikováno v:
HAL
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, In press
Proceedings of the American Mathematical Society, 2022, 150 (5), pp.1925-1935
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, In press
Proceedings of the American Mathematical Society, 2022, 150 (5), pp.1925-1935
International audience; We exhibit some relations between the Seshadri constant of an ample divisor along a closed subscheme and the behaviour of the volume function on the corresponding blow-up. As an application, we give an equivalent formulation o
Autor:
Francois BALLAY
Publikováno v:
HAL
In algebraic geometry, theorems of K\"uronya and Lozovanu characterize the ampleness and the nefness of a Cartier divisor on a projective variety in terms of the shapes of its associated Okounkov bodies. We prove the analogous result in the context o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17209b7ff5e76df7f5c66402145f62ed
Autor:
Francois BALLAY
Publikováno v:
HAL
We prove a Nakai-Moishezon criterion for adelic R-Cartier divisors, which is an arithmetic analogue of a theorem of Campana and Peternell. Our main result answers a question of Burgos Gil, Philippon, Moriwaki and Sombra. We deduce it from the case of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::794380d5812d382c5b540daab9f001ee
https://hal.archives-ouvertes.fr/hal-03358559/document
https://hal.archives-ouvertes.fr/hal-03358559/document