Zobrazeno 1 - 10
of 88
pro vyhledávání: '"Franco Maria NARDINI"'
Autor:
Francesco Busolin, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Salvatore Trani
Publikováno v:
IEEE Access, Vol 11, Pp 126691-126704 (2023)
The ranking pipelines of modern search platforms commonly exploit complex machine-learned models and have a significant impact on the query response time. In this paper, we discuss several techniques to speed up the document scoring process based on
Externí odkaz:
https://doaj.org/article/e3b25de9f0424526ae61793a43ff02df
Autor:
Claudio Lucchese, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Salvatore Trani
Publikováno v:
SoftwareX, Vol 12, Iss , Pp 100614- (2020)
RankEval is a Python open-source tool for the analysis and evaluation of ranking models based on ensembles of decision trees. Learning-to-Rank (LtR) approaches that generate tree-ensembles are considered the most effective solution for difficult rank
Externí odkaz:
https://doaj.org/article/5a6ce575423a45dc80eb79de607e1d04
Publikováno v:
Conservation Science in Cultural Heritage, Vol 12, Iss 1, Pp 109-133 (2012)
This paper describes RICH: a new architecture conceived and developed at the Scuola Normale Superiore, for collecting, promoting and sharing cultural heritage data. Starting with the observation that cultural heritage is a cross-cutting field of rese
Externí odkaz:
https://doaj.org/article/44a7300a32714dd98feec844ed4f08c7
Publikováno v:
ACM SIGIR Forum. 56:1-14
As Information Retrieval (IR) researchers, we not only develop algorithmic solutions to hard problems, but we also insist on a proper, multifaceted evaluation of ideas. The IR literature on the fundamental topic of retrieval and ranking, for instance
Publikováno v:
ACM transactions on intelligent systems and technology
7 (2015): 8–35. doi:10.1145/2766459
info:cnr-pdr/source/autori:Muntean C.I.; Nardini F.M.; Silvestri F.; Baraglia R./titolo:On learning prediction models for tourists paths/doi:10.1145%2F2766459/rivista:ACM transactions on intelligent systems and technology (Print)/anno:2015/pagina_da:8/pagina_a:35/intervallo_pagine:8–35/volume:7
7 (2015): 8–35. doi:10.1145/2766459
info:cnr-pdr/source/autori:Muntean C.I.; Nardini F.M.; Silvestri F.; Baraglia R./titolo:On learning prediction models for tourists paths/doi:10.1145%2F2766459/rivista:ACM transactions on intelligent systems and technology (Print)/anno:2015/pagina_da:8/pagina_a:35/intervallo_pagine:8–35/volume:7
In this article, we tackle the problem of predicting the “next” geographical position of a tourist, given her history (i.e., the prediction is done accordingly to the tourist’s current trail) by means of supervised learning techniques, namely G
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4888e150ff6c37950f10f3596b063bab
https://zenodo.org/record/8128600
https://zenodo.org/record/8128600
Autor:
Veronica Gil-Costa, Fernando Loor, Salvatore Trani, Franco Maria Nardini, Romina Soledad Molina, Raffaele Perego
Publikováno v:
Journal of parallel and distributed computing
155 (2021): 38–49. doi:10.1016/j.jpdc.2021.04.008
info:cnr-pdr/source/autori:Molina R.; Loor F.; Gil-Costa V.; Nardini F.M.; Perego R.; Trani S./titolo:Efficient traversal of decision tree ensembles with FPGAs/doi:10.1016%2Fj.jpdc.2021.04.008/rivista:Journal of parallel and distributed computing (Print)/anno:2021/pagina_da:38/pagina_a:49/intervallo_pagine:38–49/volume:155
155 (2021): 38–49. doi:10.1016/j.jpdc.2021.04.008
info:cnr-pdr/source/autori:Molina R.; Loor F.; Gil-Costa V.; Nardini F.M.; Perego R.; Trani S./titolo:Efficient traversal of decision tree ensembles with FPGAs/doi:10.1016%2Fj.jpdc.2021.04.008/rivista:Journal of parallel and distributed computing (Print)/anno:2021/pagina_da:38/pagina_a:49/intervallo_pagine:38–49/volume:155
System-on-Chip (SoC) based Field Programmable Gate Arrays (FPGAs) provide a hardware acceleration technology that can be rapidly deployed and tuned, thus providing a flexible solution adaptable to specific design requirements and to changing demands.
Publikováno v:
SIGIR '22-45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2255–2259, Madrid, Spain, 11-15/07/2022
Interpretable Learning to Rank (LtR) is an emerging field within the research area of explainable AI, aiming at developing intelligible and accurate predictive models. While most of the previous research efforts focus on creating post-hoc explanation
Publikováno v:
SIGIR 2022-The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3462–3465, Madrid, Spain, 11-15/07/2022
Perhaps the applied nature of information retrieval research goes some way to explain the community's rich history of evaluating machine learning models holistically, understanding that efficacy matters but so does the computational cost incurred to
Autor:
Veronica Gil-Costa, Fernando Loor, Romina Molina, Franco Maria Nardini, Raffaele Perego, Salvatore Trani
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030997359
ECIR 2022-44th European Conference on IR Research, pp. 260–273, Stavanger, Norway, 10-14/04/2022
ECIR 2022-44th European Conference on IR Research, pp. 260–273, Stavanger, Norway, 10-14/04/2022
We investigate novel SoC-FPGA solutions for fast and energy-efficient ranking based on machine-learned ensembles of decision trees. Since the memory footprint of ranking ensembles limits the effective exploitation of programmable logic for large-scal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02acb86ac63a3c64ac6d9a6bcd30910f
https://doi.org/10.1007/978-3-030-99736-6_18
https://doi.org/10.1007/978-3-030-99736-6_18