Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Francky Fouedjio"'
Autor:
Francky Fouedjio, Emet Arya
Publikováno v:
Artificial Intelligence in Geosciences, Vol 5, Iss , Pp 100081- (2024)
Machine learning methods dealing with the spatial auto-correlation of the response variable have garnered significant attention in the context of spatial prediction. Nonetheless, under these methods, the relationship between the response variable and
Externí odkaz:
https://doaj.org/article/6be179e74dc84b73acc6b65f057d5dd0
Autor:
Francky Fouedjio, Hassan Talebi
Publikováno v:
Artificial Intelligence in Geosciences, Vol 3, Iss , Pp 162-178 (2022)
Geoscientists are increasingly tasked with spatially predicting a target variable in the presence of auxiliary information using supervised machine learning algorithms. Typically, the target variable is observed at a few sampling locations due to the
Externí odkaz:
https://doaj.org/article/88d701e5685b4454879011f8db170fb5
Classification random forest with exact conditioning for spatial prediction of categorical variables
Autor:
Francky Fouedjio
Publikováno v:
Artificial Intelligence in Geosciences, Vol 2, Iss , Pp 82-95 (2021)
Machine learning methods are increasingly used for spatially predicting a categorical target variable when spatially exhaustive predictor variables are available within the study region. Even though these methods exhibit competitive spatial predictio
Externí odkaz:
https://doaj.org/article/d016cfdd77754069a3b4beb261a2125e
Autor:
Francky Fouedjio
Publikováno v:
Artificial Intelligence in Geosciences, Vol 2, Iss , Pp 115-127 (2021)
The spatial prediction of a continuous response variable when spatially exhaustive predictor variables are available within the region under study has become ubiquitous in many geoscience fields. The response variable is often subject to detection li
Externí odkaz:
https://doaj.org/article/e22b52133c3f4552b1d431b8078e01d2
Autor:
Francky Fouedjio
Publikováno v:
Artificial Intelligence in Geosciences, Vol 1, Iss , Pp 11-23 (2020)
Regression random forest is becoming a widely-used machine learning technique for spatial prediction that shows competitive prediction performance in various geoscience fields. Like other popular machine learning methods for spatial prediction, regre
Externí odkaz:
https://doaj.org/article/5b3e1487e8424e5ba61bf2b7352e41f7
Publikováno v:
Stochastic Environmental Research and Risk Assessment. 35:457-480
This paper introduces a method to generate conditional categorical simulations, given an ensemble of partially conditioned (or unconditional) categorical simulations derived from any simulation process. The proposed conditioning method relies on impl
Autor:
Francky Fouedjio
Publikováno v:
Encyclopedia of Mathematical Geosciences ISBN: 9783030260507
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d1a5c842a8703969858f5a3784365fe5
https://doi.org/10.1007/978-3-030-26050-7_218-1
https://doi.org/10.1007/978-3-030-26050-7_218-1
Autor:
Francky Fouedjio
Publikováno v:
Encyclopedia of Mathematical Geosciences ISBN: 9783030260507
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::339f7a1fa4ce0785da1edcc948532701
https://doi.org/10.1007/978-3-030-26050-7_428-1
https://doi.org/10.1007/978-3-030-26050-7_428-1
Autor:
Francky Fouedjio
Publikováno v:
WIREs Computational Statistics. 12
Publikováno v:
Computers & Geosciences. 157:104931
The spatial modeling of geo-domains has become ubiquitous in many geoscientific fields. However, geo-domains’ spatial modeling poses real challenges, including the uncertainty assessment of geo-domain boundaries. Geo-domain models are subject to un