Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Francisco-Javier Turiel"'
Publikováno v:
RIUMA. Repositorio Institucional de la Universidad de Málaga
instname
instname
It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin d’enfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-com
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114
In a previous work it is shown that every finite group G of diffeomorphisms of a connected smooth manifold M of dimension $$\ge 2$$ equals, up to quotient by the flow, the centralizer of the group of smooth automorphisms of a G-invariant complete vec
Publikováno v:
Revista Matemática Iberoamericana. 34:839-852
Consider a smooth effective action of a torus Tn on a connected C∞-manifold M. Assume that M is not a torus endowed with the natural action. Then we prove that there exists a complete vector field X on M such that the automorphism group of X equals
Publikováno v:
Ergodic Theory and Dynamical Systems. 39:954-979
Let$M$be an analytic connected 2-manifold with empty boundary, over the ground field$\mathbb{F}=\mathbb{R}$or$\mathbb{C}$. Let$Y$and$X$denote differentiable vector fields on$M$. We say that$Y$tracks$X$if$[Y,X]=fX$for some continuous function$f:\,M\ri
Publikováno v:
Geometriae Dedicata, vol 207, iss 1
Unless another thing is stated one works in the $C^\infty$ category and manifolds have empty boundary. Let $X$ and $Y$ be vector fields on a manifold $M$. We say that $Y$ tracks $X$ if $[Y,X]=fX$ for some continuous function $f\colon M\rightarrow\mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8822899dc0040dd3d3acaffbe3017798
Publikováno v:
Revista Matemática Iberoamericana. 30:317-330
This note gives an example of closed smooth manifolds M and N for which the rank of M × N is strictly greater than rank M + rank N .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5dd4a1aa8af5f00f3f47075884bf04e1
http://arxiv.org/abs/1604.08150
http://arxiv.org/abs/1604.08150
Autor:
Francisco-Javier Turiel
Publikováno v:
Comptes Rendus Mathematique. 349:451-454
Resume Dans une precedente Note, on a donne une decomposition locale en produit Kronecker-symplectique pour les structures bihamiltoniennes analytiques reelles ou holomorphes. Ici on montre quʼun tel resultat ne sʼetend pas a la classe C ∞ .
Autor:
Francisco-Javier Turiel
Publikováno v:
Comptes Rendus Mathematique. 347:77-80
Resume Dans ce travail on donne un theoreme de type Arnold–Liouville pour un feuilletage 2-isotrope, notion introduite dans une precedente Note (Turiel, 2008) pour une r -forme fermee quelconque, et on etudie quelques proprietes des reseaux entiers
Autor:
Francisco-Javier Turiel
Publikováno v:
Comptes Rendus Mathematique. 346:71-74
Resume Dans cette Note on introduit, pour une forme fermee de degre quelconque, la notion de feuilletage 2-isotrope, qui joue un role analogue a celle de feuilletage lagrangien pour une forme symplectique. Apres avoir construit une structure affine s