Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Francisco Caio M. Rodrigues"'
Publikováno v:
VISIGRAPP (3: IVAPP)
Autor:
Javam C. Machado, Lucas G. M. Leite, Lucas P. Queiroz, Iago C. Chaves, Felipe T. Brito, Francisco Caio M. Rodrigues, João P. P. Gomes
Publikováno v:
New Generation Computing. 36:5-19
Detecting faults in Hard Disk Drives (HDD) can lead to significant benefits to HDD manufacturers, users and storage system providers. As a consequence, several works have focused on the development of fault detection algorithms for HDDs. Recently, pr
Autor:
Iago C. Chaves, Lucas P. Queiroz, Francisco Caio M. Rodrigues, Manoel Rui P. Paula, Felipe T. Brito, João P. P. Gomes, Javam C. Machado, M.R. Salvador
Publikováno v:
IEEE Transactions on Industrial Informatics. 13:542-550
Hard Disk Drives (HDD) failure prediction is a challenging topic that has attracted much attention in recent years. Predicting failures in HDD may avoid losing data thus improving data reliability. Previous works on failure prediction are based on pa
Publikováno v:
Information, Vol 10, Iss 9, p 280 (2019)
Information
Volume 10
Issue 9
AHF-Information, 10(9):280. MDPI AG
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Information
Volume 10
Issue 9
AHF-Information, 10(9):280. MDPI AG
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Visualizing decision boundaries of machine learning classifiers can help in classifier design, testing and fine-tuning. Decision maps are visualization techniques that overcome the key sparsity-related limitation of scatterplots for this task. To inc
Publikováno v:
Proceedings-31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018, 353-360
STARTPAGE=353;ENDPAGE=360;TITLE=Proceedings-31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018
SIBGRAPI
STARTPAGE=353;ENDPAGE=360;TITLE=Proceedings-31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018
SIBGRAPI
Understanding how a classifier partitions a high-dimensional input space and assigns labels to the parts is an important task in machine learning. Current methods for this task mainly use color-coded sample scatterplots, which do not explicitly show
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ae3749b14874393416989e8fdca4c6d
http://www.scopus.com/inward/record.url?scp=85062244171&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85062244171&partnerID=8YFLogxK
Publikováno v:
VISIGRAPP (3: IVAPP)
Visualizing decision boundaries of modern machine learning classifiers can notably help in classifier design, testing, and fine-tuning. Dense maps are a very recent method that overcomes the key sparsity-related limitation of scatterplots for this ta
Autor:
Nina S. T. Hirata, Leandro Ticlia De La Cruz, Roberto Hirata, Rubens M. Lopes, Antonio A. Abello, Francisco Caio M. Rodrigues
Publikováno v:
VISIGRAPP (5: VISAPP)
Autor:
Javam C. Machado, Francisco Caio M. Rodrigues, Lucas P. Queiroz, Iago C. Brito, Felipe T. Brito, João P. P. Gomes
Publikováno v:
BRACIS
Being able to detect faults in Hard Disk Drives (HDD) can lead to significant benefits to computer manufacturers, users and storage system providers. As a consequence, several works have focused on the development of fault detection algorithms for HD
Publikováno v:
BRACIS
Graphics cards are complex electronic systems designed for high performance applications. Due to its processing power, graphics cards may operate at high temperatures, leading its components to a significant degradation level. This fact is even more
Autor:
Queiroz, Lucas P.1 lucas.queiroz@lsbd.ufc.br, Gomes, Joao Paulo P.1 joao.pordeus@lsbd.ufc.br, Rodrigues, Francisco Caio M.1 caio.rodrigues@lsbd.ufc.br, Brito, Felipe T.1 felipe.timbo@lsbd.ufc.br, Chaves, Iago C.1 iago.chaves@lsbd.ufc.br, Leite, Lucas G. M.1 lucas.goncalves@lsbd.ufc.br, Machado, Javam C.1 javam.machado@lsbd.ufc.br
Publikováno v:
New Generation Computing. Jan2018, Vol. 36 Issue 1, p5-19. 15p.