Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Francisco Bernis"'
Autor:
Francisco Bernis
Publikováno v:
Revista de Dialectología y Tradiciones Populares, Vol 50, Iss 1, Pp 165-178 (1995)
Pocos animales han generado un folklore tan extenso y variado como la cigüeña blanca. Desde al menos el inicio del Neolítico, esta ave ha desarrollado una pronunciada preferencia por anidar sobre edificios o árboles del paisaje rural o pastoril.
Externí odkaz:
https://doaj.org/article/7dc269c49c714125ba122ecf94cbf0ae
Autor:
Francisco Bernis
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 26:1061-1078
Publikováno v:
SIAM Journal on Mathematical Analysis. 27:515-527
A mathematical analysis is given of two third-order ordinary differential equations which arise in models for flows of thin viscous films over solid surfaces. Questions about existence, uniqueness, and qualitative properties of solutions are discusse
Autor:
Man Kam Kwong, Francisco Bernis
Publikováno v:
Annales de la faculté des sciences de Toulouse Mathématiques. 5:577-585
On presente un theoreme d'existence et d'unicite pour des problemes a valeurs initiales pour l'equation y (m) = f(x, y), ou f(x, y) peut ne pas satisfaire la condition de Lipschitz usuelle, et meme f peut etre discontinue en y. Dans la preuve on util
Publikováno v:
Journal of Differential Equations. 117:469-486
Autor:
Francisco Bernis, Juan Luis Vázquez
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 1993:1-32
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 18:217-234
Autor:
Francisco Bernis, J. B. McLeod
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 17:1039-1068
Autor:
Francisco Bernis, Avner Friedman
Publikováno v:
Journal of Differential Equations. 83(1):179-206
This paper is concerned with nonlinear degenerate parabolic equations of the form ut + (−1)m − 1 D(f(u) D2m + 1u) = 0 with f(u) ~ ¦u¦n (n ⩾ 1) near u = 0 and D = ∂∂x. Under appropriate boundary conditions it is shown that there exists a w
Publikováno v:
Nonlinearity, 13, 1-27. IOP Publishing Ltd.
Bernis, F, Hulshof, J & King, J R 2000, ' Dipoles and similarity solutions of the thin film equation in the half-line. ', Nonlinearity, vol. 13, pp. 1-27 . https://doi.org/10.1088/0951-7715/13/1/301
Bernis, F, Hulshof, J & King, J R 2000, ' Dipoles and similarity solutions of the thin film equation in the half-line. ', Nonlinearity, vol. 13, pp. 1-27 . https://doi.org/10.1088/0951-7715/13/1/301
We consider non-negative solutions on the half-line of the thin film equation ht +(hn hxxx )x = 0, which arises in lubrication models for thin viscous films, spreading droplets and Hele-Shaw cells. We present a discussion of the boundary conditions a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d328c240211c8fc2bbc1b595ea7b9ccc
https://research.vu.nl/en/publications/59e5f09e-441f-4830-b366-8600ffaf92b0
https://research.vu.nl/en/publications/59e5f09e-441f-4830-b366-8600ffaf92b0