Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Francisco Alcrudo"'
Autor:
J. Mulet, Francisco Alcrudo
Publikováno v:
Journal of Hydraulic Research. 45:45-57
A description of the Tous Dam break as a case study for flood model development and validation purposes is presented. The corresponding data set was put together during a joint European project named Investigation of extreMe flood Processes And unCer
Publikováno v:
Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2007, 226 (2), pp.1753-1783. ⟨10.1016/j.jcp.2007.06.017⟩
Journal of Computational Physics, Elsevier, 2007, 226 (2), pp.1753-1783. ⟨10.1016/j.jcp.2007.06.017⟩
International audience; This work is devoted to the analysis of a finite volume method recently proposed for the numerical computation of a class of non homogenous systems of partial differencial equations of interest in fluid dynamics. The stability
Autor:
Francisco Alcrudo, Fayssal Benkhaldoun
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
instname
The similarity solution to the Riemann problem of the one dimensional shallow water equations (SWE) with a bottom step discontinuity is presented. The step is placed at the same location where the flow variables are initially discontinuous. While the
Publikováno v:
Journal of Hydraulic Research. 32:721-742
An implicit time integration method for the simulation of steady and unsteady flow in pipes and channels is presented. It is based on the theory of Total Variation Diminishing (TVD) methods. A conservative linearization leads to a block tridiagonal s
Publikováno v:
International Journal for Numerical Methods in Fluids. 16:489-505
A high-order Godunov-type scheme based on MUSCL variable extrapolation and slope limiters is presented for the resolution of 2D free-surface flow equations. In order to apply a finite volume technique of integration over body-fitted grids, the constr
Publikováno v:
Journal of Hydraulic Engineering. 118:1359-1372
The addition of a dissipation step to the widely used McCormack numerical scheme is proposed for solving one-dimensional open-channel flow equations. The extra step is devised according to the theory of total variation diminishing (TVD) schemes that
Publikováno v:
International Journal for Numerical Methods in Fluids. 14:1009-1018
SUMMARY An upwind finite difference scheme based on flux difference splitting is presented for the solution of the equations governing unsteady open channel hydraulics. An approximate Jacobian needed for splitting the flux differences is defined that
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
En este trabajo se plantea la simulación matemática del flujo no estacionario en lámina libre. Ello requiere la resolución de un sistema no lineal de ecuaciones diferenciales en derivadas parciales hiperbólico que constituye la base del modelo u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::970578b05c2935ff14cb71a40c81fcd5
https://hdl.handle.net/10251/118588
https://hdl.handle.net/10251/118588
Publikováno v:
ResearcherID
Scopus-Elsevier
Scopus-Elsevier
This paper describes the experiments carried out on the flooding of an urban district model for the purposes of mathematical model testing and validation. A model urban district made up of concrete blocks has been placed in an instrumented physical m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2881396747d08bffa028ef002086c46e
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000246486300006&KeyUID=WOS:000246486300006
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000246486300006&KeyUID=WOS:000246486300006