Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Francesco Lettich"'
Publikováno v:
IEEE Access, Vol 11, Pp 90857-90875 (2023)
The widespread adoption of personal location devices, the Internet of Mobile Things, and Location Based Social Networks, enables the collection of vast amounts of movement data. This data often needs to be enriched with a variety of semantic dimensio
Externí odkaz:
https://doaj.org/article/71a19e26867141c1b366db953f77e3d0
Publikováno v:
2022 23rd IEEE International Conference on Mobile Data Management (MDM)
MDM 2022-23rd IEEE International Conference on Mobile Data Management, pp. 274–277, Paphos, Cyprus, Online, 6-9/06/2022
SEBD 2022-30th Italian Symposium on Advanced Database Systems, pp. 175–182, Tirrenia, Pisa, Italy, 19-22/06/2022
MDM 2022-23rd IEEE International Conference on Mobile Data Management, pp. 274–277, Paphos, Cyprus, Online, 6-9/06/2022
SEBD 2022-30th Italian Symposium on Advanced Database Systems, pp. 175–182, Tirrenia, Pisa, Italy, 19-22/06/2022
The notion of multiple aspect trajectory (MAT) has been recently introduced in the literature to represent movement data that is heavily semantically enriched with dimensions (aspects) representing various types of semantic information (e.g., stops,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1bc1a1071ccf917db0c39c84c0753a7
https://zenodo.org/record/7186098
https://zenodo.org/record/7186098
Publikováno v:
FRAME'21-1st Workshop on Flexible Resource and Application Management on the Edge, pp. 39–40, Virtual Event, Sweden, 25/06/2021
FRAME '21: Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge 2021
FRAME'21-1st Workshop on Flexible Resource and Application Management on the Edge, Virtual Event, Sweden, 25/06/2021
info:cnr-pdr/source/autori:Carlini E.; Dazzi P.; Lettich F.; Perego R.; Renso C./congresso_nome:FRAME'21-1st Workshop on Flexible Resource and Application Management on the Edge/congresso_luogo:Virtual Event, Sweden/congresso_data:25%2F06%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge
FRAME '21: Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge 2021
FRAME'21-1st Workshop on Flexible Resource and Application Management on the Edge, Virtual Event, Sweden, 25/06/2021
info:cnr-pdr/source/autori:Carlini E.; Dazzi P.; Lettich F.; Perego R.; Renso C./congresso_nome:FRAME'21-1st Workshop on Flexible Resource and Application Management on the Edge/congresso_luogo:Virtual Event, Sweden/congresso_data:25%2F06%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
Proceedings of the 1st Workshop on Flexible Resource and Application Management on the Edge
Today's innovative digital services dealing with the mobility of per- sons and goods produce huge amount of data. To propose advanced and efficient mobility services, the collection and aggregation of new sources of data from various producers are ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e31a8a85a5b6f4f33e1672979631379
https://openportal.isti.cnr.it/doc?id=people______::86b242454e6837364c1618b55525a845
https://openportal.isti.cnr.it/doc?id=people______::86b242454e6837364c1618b55525a845
Publikováno v:
SIGSPATIAL/GIS
Consider a customer who needs to fulfill a shopping list, and also a personal shopper who is willing to buy and resell to customers the goods in their shopping lists. It is in the personal shopper's best interest to find (shopping) routes that (i) mi
Autor:
José Antônio Fernandes de Macêdo, Ticiana L. Coelho da Silva, Karine Zeitouni, Francesco Lettich, Marco A. Casanova
Publikováno v:
MDM
The ubiquity of GPS-enabled smartphones and automotive navigation systems allows to monitor and collect massive streams of trajectory data in real-time. This enables real-time analyses on mobility data in urban settings, which in turn have the potent
Publikováno v:
MDM
The well-known Optimal Sequenced Routing (OSR) query considers a traveller that needs to stop by some cost-free points of interest (POIs), each belonging to a given strict sequence of categories of interest (COIs), while minimizing only the distance
Autor:
Tales Matos, Franco Maria Nardini, Francesco Lettich, José Maria Monteiro, Raffaele Perego, Chiara Renso, José Antônio Fernandes de Macêdo
Publikováno v:
Expert systems with applications 145 (2020). doi:10.1016/j.eswa.2019.113128
info:cnr-pdr/source/autori:Matos T.; Macedo J.A.; Lettich F.; Monteiro J.M.; Renso C.; Perego R.; Nardini F.M./titolo:Leveraging feature selection to detect potential tax fraudsters/doi:10.1016%2Fj.eswa.2019.113128/rivista:Expert systems with applications/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:145
info:cnr-pdr/source/autori:Matos T.; Macedo J.A.; Lettich F.; Monteiro J.M.; Renso C.; Perego R.; Nardini F.M./titolo:Leveraging feature selection to detect potential tax fraudsters/doi:10.1016%2Fj.eswa.2019.113128/rivista:Expert systems with applications/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:145
Tax evasion is any act that knowingly or unknowingly, legally or unlawfully, leads to non-payment or underpayment of tax due. Enforcing the correct payment of taxes by taxpayers is fundamental in maintaining investments that are necessary and benefit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c9cf15ee452beeb1dab0ffda3480d77
https://openportal.isti.cnr.it/doc?id=people______::c709d5f80e71c2c217f0f5f10ddd20fd
https://openportal.isti.cnr.it/doc?id=people______::c709d5f80e71c2c217f0f5f10ddd20fd
Autor:
Franco Maria Nardini, Regis Pires Magalhães, Francesco Lettich, Raffaele Perego, Roberto Trani, Chiara Renso, José Antônio Fernandes de Macêdo
Publikováno v:
Information systems (Oxf.) 98 (2019). doi:10.1016/j.is.2019.101444
info:cnr-pdr/source/autori:Magalhaes R.P.; Lettich F.; Macedo J.A.; Nardini F.M.; Perego R.; Renso C.; Trani R./titolo:Speed prediction in large and dynamic traffic sensor networks/doi:10.1016%2Fj.is.2019.101444/rivista:Information systems (Oxf.)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume:98
info:cnr-pdr/source/autori:Magalhaes R.P.; Lettich F.; Macedo J.A.; Nardini F.M.; Perego R.; Renso C.; Trani R./titolo:Speed prediction in large and dynamic traffic sensor networks/doi:10.1016%2Fj.is.2019.101444/rivista:Information systems (Oxf.)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume:98
Smart cities are nowadays equipped with pervasive networks of sensors that monitor traffic in real-time and record huge volumes of traffic data. These datasets constitute a rich source of information that can be used to extract knowledge useful for m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c236305d800f0a727ecde3124268e767
https://openportal.isti.cnr.it/doc?id=people______::641e8f16c735ccf1af8788cd04068e1b
https://openportal.isti.cnr.it/doc?id=people______::641e8f16c735ccf1af8788cd04068e1b
Autor:
Franco Maria Nardini, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Rossano Venturini, Nicola Tonellotto, Francesco Lettich
Publikováno v:
IEEE Transactions on Parallel and Distributed Systems
IEEE transactions on parallel and distributed systems
30 (2019): 2075–2089. doi:10.1109/TPDS.2018.2860982
info:cnr-pdr/source/autori:Lettich F.; Lucchese C.; Nardini F.M.; Orlando S.; Perego R.; Tonellotto N.; Venturini R./titolo:Parallel Traversal of Large Ensembles of Decision Trees/doi:10.1109%2FTPDS.2018.2860982/rivista:IEEE transactions on parallel and distributed systems (Print)/anno:2019/pagina_da:2075/pagina_a:2089/intervallo_pagine:2075–2089/volume:30
IEEE transactions on parallel and distributed systems
30 (2019): 2075–2089. doi:10.1109/TPDS.2018.2860982
info:cnr-pdr/source/autori:Lettich F.; Lucchese C.; Nardini F.M.; Orlando S.; Perego R.; Tonellotto N.; Venturini R./titolo:Parallel Traversal of Large Ensembles of Decision Trees/doi:10.1109%2FTPDS.2018.2860982/rivista:IEEE transactions on parallel and distributed systems (Print)/anno:2019/pagina_da:2075/pagina_a:2089/intervallo_pagine:2075–2089/volume:30
Machine-learnt models based on additive ensembles of regression trees are currently deemed the best solution to address complex classification, regression, and ranking tasks. The deployment of such models is computationally demanding: to compute the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57b75b0fcc417f09483e87e39882e60f
http://hdl.handle.net/10278/3703670
http://hdl.handle.net/10278/3703670
Autor:
Salvatore Orlando, Luis Otavio Alvares, Claudio Silvestri, Alessandra Raffaetà, Francesco Lettich, Vania Bogorny
Publikováno v:
Data & Knowledge Engineering. 102:22-41
Several algorithms have been proposed in the last few years for mining different mobility patterns from trajectories, such as flocks, chasing, meeting, and convergence. An interesting behavior that has not been much explored in trajectory pattern min