Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Francesco Fassò"'
Autor:
Francesco Fassò, Andrea Giacobbe
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 051 (2007)
Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that th
Externí odkaz:
https://doaj.org/article/62ce56a3739d4833afdd6fa9f7a3673b
We study the class of nonholonomic mechanical systems formed by a heavy symmetric ball that rolls without sliding on a surface of revolution, which is either at rest or rotates about its (vertical) figure axis with uniform angular velocity $$\Omega $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e694ffc72f311c9747398c9cc11b104
http://hdl.handle.net/11562/1074827
http://hdl.handle.net/11562/1074827
Autor:
Francesco Fassò
Publikováno v:
Perturbation Theory ISBN: 9781071626207
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5c94db4624ea515417f40c213e24840a
https://doi.org/10.1007/978-1-0716-2621-4_757
https://doi.org/10.1007/978-1-0716-2621-4_757
Autor:
Francesco Fassò, Nicola Sansonetto
We study some aspects of the dynamics of the nonholonomic system formed by a heavy homogeneous ball constrained to roll without sliding on a steadily rotating surface of revolution. First, in the case in which the figure axis of the surface is vertic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99c2b7e478ca7d79ebf13f23b504c729
http://hdl.handle.net/11577/3456207
http://hdl.handle.net/11577/3456207
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56 (6), pp.1939-1954. ⟨10.1051/m2an/2022059⟩
ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56 (6), pp.1939-1954. ⟨10.1051/m2an/2022059⟩
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of the optimal transport prob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba9dc1a2f367eed7894bc51ebb1756e6
https://hal.archives-ouvertes.fr/hal-03467888
https://hal.archives-ouvertes.fr/hal-03467888
Publikováno v:
Journal of Geometric Mechanics.
The connection between the dynamics in relative periodic orbits of vector fields with noncompact symmetry groups and periodic control for the class of control systems on Lie groups known as '(robotic) locomotion systems' is well known, and has led to
Publikováno v:
García-Naranjo, L, Fassò, F & Montaldi, J 2018, ' Integrability and dynamics of the n-dimensional symmetric Veselova top ', Journal of Nonlinear Science, vol. 29, no. 3, pp. 1205-1246 . https://doi.org/10.1007/s00332-018-9515-5
We consider the the n-dimensional generalisation of the nonholonomic Veselova problem. We derive the reduced equations of motion in terms of the mass tensor of the body and determine some general properties of the dynamics. In particular we give a cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::650da52cc87892cb0134d266715bdc43
http://arxiv.org/abs/1804.09090
http://arxiv.org/abs/1804.09090
In nonholonomic mechanical systems with constraints that are affine (linear nonhomogeneous) functions of the velocities, the energy is typically not a first integral. It was shown in [Fass\`o and Sansonetto, JNLS, 26, (2016)] that, nevertheless, ther
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e9ebb7b99ff8dbb948ea899fa6ec00f
http://hdl.handle.net/11562/988497
http://hdl.handle.net/11562/988497
Autor:
Debra Lewis, Francesco Fassò
Publikováno v:
Archive for Rational Mechanics and Analysis. 212:1065-1069
Autor:
Francesco Fassò, Nicola Sansonetto
Publikováno v:
International Journal of Geometric Methods in Modern Physics. :1343-1355
Noether theorem plays a central role in linking symmetries and first integrals in Lagrangian mechanics. The situation is different in the nonholonomic context, but in the last decades there have been several extensions of Noether theorem to the nonho