Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Francesco Della Santa"'
Autor:
Francesco Della Santa
Publikováno v:
Mathematics, Vol 12, Iss 8, p 1201 (2024)
In global optimization problems, diversification approaches are often necessary to overcome the convergence toward local optima. One approach is the multi-start method, where a set of different starting configurations are taken into account to design
Externí odkaz:
https://doaj.org/article/0b414b62c34a460b8e75819f5bc770bd
Autor:
Stefano Berrone, Francesco Della Santa, Antonio Mastropietro, Sandra Pieraccini, Francesco Vaccarino
Publikováno v:
Mathematics, Vol 10, Iss 5, p 786 (2022)
In this work, we extend the formulation of the spatial-based graph convolutional networks with a new architecture, called the graph-informed neural network (GINN). This new architecture is specifically designed for regression tasks on graph-structure
Externí odkaz:
https://doaj.org/article/266bb7d2f9c44ffa897c63bb36f8eb84
Autor:
Stefano Berrone, Francesco Della Santa
Publikováno v:
Geosciences, Vol 11, Iss 3, p 131 (2021)
In this work, we investigate the sensitivity of a family of multi-task Deep Neural Networks (DNN) trained to predict fluxes through given Discrete Fracture Networks (DFNs), stochastically varying the fracture transmissivities. In particular, detailed
Externí odkaz:
https://doaj.org/article/50210fbb44eb41f1ab5d6a87dc2de29b
Autor:
Francesco Della Santa, Stefano Berrone
Publikováno v:
Geosciences
Volume 11
Issue 3
Geosciences, Vol 11, Iss 131, p 131 (2021)
Volume 11
Issue 3
Geosciences, Vol 11, Iss 131, p 131 (2021)
In this work, we investigate the sensitivity of a family of multi-task Deep Neural Networks (DNN) trained to predict fluxes through given Discrete Fracture Networks (DFNs), stochastically varying the fracture transmissivities. In particular, detailed
Autor:
Maria Ferrara, Alessandro De Gregorio, Enrico Fabrizio, Antonio Mastropietro, Francesco Vaccarino, Francesco Della Santa, Ulderico Fugacci, Matteo Bilardo
Publikováno v:
Renewable energy 176 (2021): 590–605. doi:10.1016/j.renene.2021.05.044
info:cnr-pdr/source/autori:Ferrara, Maria; Della Santa, Francesco; Bilardo, Matteo; De Gregorio, Alessandro; Mastropietro, Antonio; Fugacci, Ulderico; Vaccarino, Francesco; Fabrizio, Enrico/titolo:Design optimization of renewable energy systems for NZEBs based on deep residual learning/doi:10.1016%2Fj.renene.2021.05.044/rivista:Renewable energy/anno:2021/pagina_da:590/pagina_a:605/intervallo_pagine:590–605/volume:176
info:cnr-pdr/source/autori:Ferrara, Maria; Della Santa, Francesco; Bilardo, Matteo; De Gregorio, Alessandro; Mastropietro, Antonio; Fugacci, Ulderico; Vaccarino, Francesco; Fabrizio, Enrico/titolo:Design optimization of renewable energy systems for NZEBs based on deep residual learning/doi:10.1016%2Fj.renene.2021.05.044/rivista:Renewable energy/anno:2021/pagina_da:590/pagina_a:605/intervallo_pagine:590–605/volume:176
The design of renewable energy systems for Nearly Zero Energy Buildings (NZEB) is a complex optimization problem. In recent years, simulation-based optimization has demonstrated to be able to support the search for optimal design, but improvements to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bf6f47af8149d8f1bfa8104aa9db702
http://www.scopus.com/record/display.url?eid=2-s2.0-85107069109&origin=inward
http://www.scopus.com/record/display.url?eid=2-s2.0-85107069109&origin=inward
Autor:
FRANCESCO DELLA SANTA, Maria Ferrara, MATTEO BILARDO, Gregorio, Alessandro, Mastropietro, Antonio, Ulderico Fugacci, Francesco Vaccarino, Enrico Fabrizio
Publikováno v:
Politecnico di Torino-IRIS
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f86b5db6d9b398cc5c91bd9ff152509e
http://hdl.handle.net/11583/2845052
http://hdl.handle.net/11583/2845052
Autor:
Francesco Vaccarino, Sandra Pieraccini, Francesco Della Santa, Antonio Mastropietro, Stefano Berrone
Publikováno v:
Journal of Computational Science. 55:101458
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, releva
Autor:
FRANCESCO DELLA SANTA
Publikováno v:
Politecnico di Torino-IRIS
FRANCESCO DELLA SANTA
FRANCESCO DELLA SANTA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4c7031fb7af2db5943b413a695b967bb
https://iris.polito.it/handle/11583/2882079.3
https://iris.polito.it/handle/11583/2882079.3
Autor:
FRANCESCO DELLA SANTA
Publikováno v:
Politecnico di Torino-IRIS
FRANCESCO DELLA SANTA
FRANCESCO DELLA SANTA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::87b4990ced5de50311770491f2957a3a
https://iris.polito.it/handle/11583/2973331
https://iris.polito.it/handle/11583/2973331