Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Francesca Gardini"'
Publikováno v:
Computers & Mathematics with Applications. 79:2035-2056
We discuss the p - and h p -versions of the virtual element method for the approximation of eigenpairs of elliptic operators with a potential term on polygonal meshes. An application of this model is provided by the Schrodinger equation with a pseudo
Publikováno v:
SEMA SIMAI Springer Series ISBN: 9783030953188
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7bfab6fd741119cc4ae8adbf8dd04f86
https://hdl.handle.net/11379/564904
https://hdl.handle.net/11379/564904
Publikováno v:
Calcolo. 57
We discuss the solution of eigenvalue problems associated with partial differential equations that can be written in the generalized form $\m{A}x=\lambda\m{B}x$, where the matrices $\m{A}$ and/or $\m{B}$ may depend on a scalar parameter. Parameter de
Publikováno v:
Applications of mathematics (Dordr., Online) 63 (2018): 333–365. doi:10.21136/AM.2018.0093-18
info:cnr-pdr/source/autori:O. Certík, F. Gardini, G. Manzini, and G. Vacca/titolo:The Virtual Element Method for eigenvalue problems with potential terms on polytopic meshes/doi:10.21136%2FAM.2018.0093-18/rivista:Applications of mathematics (Dordr., Online)/anno:2018/pagina_da:333/pagina_a:365/intervallo_pagine:333–365/volume:63
info:cnr-pdr/source/autori:O. Certík, F. Gardini, G. Manzini, and G. Vacca/titolo:The Virtual Element Method for eigenvalue problems with potential terms on polytopic meshes/doi:10.21136%2FAM.2018.0093-18/rivista:Applications of mathematics (Dordr., Online)/anno:2018/pagina_da:333/pagina_a:365/intervallo_pagine:333–365/volume:63
We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model i
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98a27072d3048f72d3d2fb2d0a9bb5dc
Autor:
Francesca Gardini, Giuseppe Vacca
We study the virtual element approximation of elliptic eigenvalue problems. The main result of the article states that the virtual element method provides an optimal-order approximation of the eigenmodes. A wide set of numerical tests confirm the the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5ce19306655a1d06cf035bcd409be8a
http://hdl.handle.net/10281/180611
http://hdl.handle.net/10281/180611
Publikováno v:
Mathematics of computation 86 (2017): 2213–2237. doi:10.1090/mcom/3212
info:cnr-pdr/source/autori:D. Boffi, D. Gallistl, F. Gardini, and L. Gastaldi/titolo:Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form/doi:10.1090%2Fmcom%2F3212/rivista:Mathematics of computation/anno:2017/pagina_da:2213/pagina_a:2237/intervallo_pagine:2213–2237/volume:86
info:cnr-pdr/source/autori:D. Boffi, D. Gallistl, F. Gardini, and L. Gastaldi/titolo:Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form/doi:10.1090%2Fmcom%2F3212/rivista:Mathematics of computation/anno:2017/pagina_da:2213/pagina_a:2237/intervallo_pagine:2213–2237/volume:86
It is shown that the h-adaptive mixed finite element method for the discretization of eigenvalue clusters of the Laplace operator produces optimal convergence rates in terms of nonlinear approximation classes. The results are valid for the typical mi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b6251257cbfa13ef6237d93d9659d53
http://hdl.handle.net/11379/496655
http://hdl.handle.net/11379/496655
Autor:
Francesca Gardini
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis. 43:853-865
We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since