Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Francesca Colasuonno"'
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 1, Pp 1-23 (2023)
We face a rigidity problem for the fractional $ p $-Laplace operator to extend to this new framework some tools useful for the linear case. It is known that $ (-\Delta)^s(1-|x|^{2})^s_+ $ and $ -\Delta_p(1-|x|^{\frac{p}{p-1}}) $ are constant function
Externí odkaz:
https://doaj.org/article/d76370a300244676bd26fbfd3f6bfd35
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 11, Iss 1, Pp 1-17 (2020)
In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in an N-dimensional ball and is subj
Externí odkaz:
https://doaj.org/article/70884cfae8354f788cf64883ecd6dc6f
Autor:
Francesca Colasuonno, Benedetta Noris
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 8, Iss 1, Pp 55-72 (2017)
This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity t
Externí odkaz:
https://doaj.org/article/4f2346221a9d4393947055c688ac1233
Publikováno v:
Journal of Differential Equations. 285:607-639
We prove the existence of multiple positive BV-solutions of the Neumann problem $$ \begin{cases} \displaystyle -\left(\frac{u'}{\sqrt{1+u'^2}}\right)'=a(x)f(u)\quad&\mbox{in }(0,1), u'(0)=u'(1)=0,& {cases} $$ where $a(x) > 0$ and $f$ belongs to a cla
Autor:
Francesca Colasuonno
Publikováno v:
Mathematical Methods in the Applied Sciences. 45:8655-8673
We investigate the existence and the multiplicity of solutions of the problem (Formula presented.) where Ω is a smooth, bounded domain of (Formula presented.), 1 < p < q < ∞, and the nonlinearity g behaves as uq − 1 at infinity. We use variation
Autor:
Francesca Colasuonno, Benedetta Noris
In this paper we deal with the equation \[-\Delta_p u+|u|^{p-2}u=|u|^{q-2}u\] for $1p$, under Neumann boundary conditions in the unit ball of $\mathbb R^N$. We focus on the three positive, radial, and radially non-decreasing solutions, whose existenc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f93b5f0501cdf4d95c3cff7ea4df7a7
Autor:
Fausto Ferrari, Francesca Colasuonno
We consider the $p$-Laplacian equation $-\Delta_p u=1$ for $1
Comment: 18 pages, 0 figures
Comment: 18 pages, 0 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d7115ad854770146bbf0365206527f0
http://hdl.handle.net/11585/714862
http://hdl.handle.net/11585/714862
Autor:
Eleonora Cinti, Francesca Colasuonno
We establish existence of positive non-decreasing radial solutions for a nonlocal nonlinear Neumann problem both in the ball and in the annulus. The nonlinearity that we consider is rather general, allowing for supercritical growth (in the sense of S
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0b7adaa19c5d9f1e7ddd8e45305936d
https://hdl.handle.net/11585/725120
https://hdl.handle.net/11585/725120
Autor:
Benedetta Noris, Francesca Colasuonno
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 37:3025-3057
For p > 2, we consider the quasilinear equation \begin{document}$-\Delta_p u+|u|^{p-2}u=g(u)$\end{document} in the unit ball B of \begin{document}$\mathbb R^N$\end{document} , with homogeneous Neumann boundary conditions. The assumptions on g are ver
Publikováno v:
Annali di matematica pura ed applicata, 198 (3
In this paper, we study the static Born–Infeld equation -div(∇u1
SCOPUS: ar.j
info:eu-repo/semantics/published
SCOPUS: ar.j
info:eu-repo/semantics/published
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6a1a680d436ec9aa9a41e6aafe1a1b0
http://hdl.handle.net/11585/771355
http://hdl.handle.net/11585/771355