Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Francesc Perera"'
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 151:525-547
We prove that Cuntz semigroups of C*-algebras satisfy Edwards' condition with respect to every quasitrace. This condition is a key ingredient in the study of the realization problem of functions on the cone of quasitraces as ranks of positive element
Autor:
Francesc Perera, Cornel Pasnicu
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 57, no. 2 (2013), 359-377
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 57, Núm. 2 (2013); p. 359-377
instname
Publ. Mat. 57, no. 2 (2013), 359-377
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 57, Núm. 2 (2013); p. 359-377
We define a Riesz type interpolation property for the Cuntz semigroup of a $C^*$-algebra and prove it is satisfied by the Cuntz semigroup of every $C^*$-algebra with the ideal property. Related to this, we obtain two characterizations of the ideal pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2fe8df037cace0c2bba86ad752987722
http://hdl.handle.net/2072/399241
http://hdl.handle.net/2072/399241
Publikováno v:
International Mathematics Research Notices. 2020:5342-5386
We show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz semigroups $S$ and $T$, there is another Cuntz semigroup $((S,T))$ playing the role of morphisms from $S$ to $T$. Applied to C*-algebras $A$ and $B$,
We prove that the category of abstract Cuntz semigroups is bicomplete. As a consequence, the category admits products and ultraproducts. We further show that the scaled Cuntz semigroup of the (ultra)product of a family of C*-algebras agrees with the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b570a98c05afeafdaa18332fe793e3bb
http://arxiv.org/abs/1905.03208
http://arxiv.org/abs/1905.03208
Autor:
Karen R. Strung, Francesc Perera
This book is directed towards graduate students that wish to start from the basic theory of C•-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C•-algebras.The text is divided into th
This book collects the notes of the lectures given at the Advanced Course on Crossed Products, Groupoids, and Rokhlin dimension, that took place at the Centre de Recerca Matemàtica (CRM) from March 13 to March 17, 2017. The notes consist of three se
We previously showed that abstract Cuntz semigroups form a closed symmetric monoidal category. This automatically provides additional structure in the category, such as a composition and an external tensor product, for which we give concrete construc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b13d3833ee8a2f9bc5218cea523a279
http://arxiv.org/abs/1811.08689
http://arxiv.org/abs/1811.08689
The uncovering of new structure on the Cuntz semigroup of a C*-algebra of stable rank one leads to several applications: We answer affirmatively, for the class of stable rank one C*-algebras, a conjecture by Blackadar and Handelman on dimension funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ee60d708ea5d65f9ab7b0bb813fd282
The Cuntz semigroup of a $C^•$-algebra is an important invariant in the structure and classification theory of $C^•$-algebras. It captures more information than $K$-theory but is often more delicate to handle. The authors systematically study the
This book collects the notes of the lectures given at an Advanced Course on Dynamical Systems at the Centre de Recerca Matemàtica (CRM) in Barcelona. The notes consist of four series of lectures.The first one, given by Andrew Toms, presents the basi